4,967 research outputs found

    Using Wii technology to explore real spaces via virtual environments for people who are blind

    Get PDF
    Purpose - Virtual environments (VEs) that represent real spaces (RSs) give people who are blind the opportunity to build a cognitive map in advance that they will be able to use when arriving at the RS. Design - In this research study Nintendo Wii based technology was used for exploring VEs via the Wiici application. The Wiimote allows the user to interact with VEs by simulating walking and scanning the space. Finding - By getting haptic and auditory feedback the user learned to explore new spaces. We examined the participants' abilities to explore new simple and complex places, construct a cognitive map, and perform orientation tasks in the RS. Originality – To our knowledge, this finding presents the first virtual environment for people who are blind that allow the participants to scan the environment and by this to construct map model spatial representations

    Virtual reality-based assessment and rehabilitation of functional mobility

    Get PDF
    The advent of virtual reality (VR) as a tool for real-world training dates back to the mid-twentieth century and the early years of driving and flight simulators. These simulation environments, while far below the quality of today’s visual displays, proved to be advantageous to the learner due to the safe training environments the simulations provided. More recently, these training environments have proven beneficial in the transfer of user-learned skills from the simulated environment to the real world [5, 31, 48, 51, 57]. Of course the VR technology of today has come a long way. Contemporary displays boast high-resolution, wide-angle fields of view and increased portability. This has led to the evolution of new VR research and training applications in many different arenas, several of which are covered in other chapters of this book. This is true of clinical assessment and rehabilitation as well, as the field has recognized the potential advantages of incorporating VR technologies into patient training for almost 20 years [7, 10, 18, 45, 78]

    Dispositivo de realidade virtual para melhoria da marcha em pacientes com a doença de Parkinson

    Get PDF
    Dissertação de mestrado em Computer ScienceIn recent years there have been many improvements to medical procedures, involving the use of augmented reality technology to provide new innovative approaches to difficult tasks that are often required of the patients, requiring less physical exertion from the to achieve the same results or simply looking at the problem in a new perspective. Virtual reality technology has the capability of creating an interactive, motivating environment in which practice intensity and feedback can be manipulated to create individualised treatments to retrain movement. Currently there is a very large amount of people suffering from minor to severe functional limitations, impairments such as loss of range of motion, decreased reacting times, disordered movement organisation, and impaired force generation create deficits in motor control that effect the personss capacity for independent living and economic self-sufficiency. The use of augmented reality is starting to be used in more medical scenario’s and in the treatment of many diseases generally co-related with motor difficulties or recovery treatments. One of the diseases that has been looked more prominently for augmented reality development is the Parkinson’s disease which causes its patients to suffer severe gait constriction and whose generalised gait treatments didn’t produce a significant improvement in the patients gait without the use of heavy medication. One other important detail to take notice is that the Parkinsons disease causes the patient to abruptly enter a freezing state without any kind of warning which can lead the patient to fall and severally harm itself depending on the situation at hand. The objective of this thesis is to explore the possibilities of the use of augmented reality in an attempt to improve gait in patients suffering from Parkinson’s disease. For this purpose many augmented reality glasses were analysed selecting the best one in terms of affordability, comfort and utility. The application developed has the objective of improving the patients gait by displaying an augmented reality supper- imposed path for the patient to follow matching auditory cues with each of the patients steps and also helping the patient of he suddenly finds himself affected by a ”freezing” episode.Recentemente tem sido feitos vários melhoramentos nos procedimentos médicos, recorrendo ao uso de tecnologias como realidade aumentada para fornecer uma nova abordagem a tarefas complicadas que são frequentemente requeridas aos pacientes, requerendo um menor esforço físico e feedback imediato ou simplesmente para obter uma nova perspetiva sobre o problema em questão. O uso de realidade aumentada tem vindo a ser cada vez maior, sendo usado em cada vez mais procedimentos e para tratamento de variadas condições principalmente focadas em dificuldades motoras e fisioterapia. Uma das doenças que despertou maior interesse no uso de realidade aumentada no seu tratamento é a doença de Parkinson, conhecida por causa deterioramento nas capacidades motoras dos afetados causando problemas na marcha da pessoa que, afetam varias tarefas do seu dia a dia. Outro detalhe importante da doença de Parkinson é que os afetados também tem o que são chamados de episódios de ”congelamento” que acontecem quando o paciente de repente e sem nenhum aviso previ-o fica paralisado durante uns instantes, o que pode provocar a queda da pessoa. Estes episódios não são constantes podendo variar bastante na ocorrência e na intensidade de pessoa a pessoa. O objetivo desta dissertação é a exploração das possibilidades do uso de realidade aumentada numa tentativa de melhorar a marcha das pessoas afetadas com a doença de Parkinson. Para este propósito muitas ferramentas de realidade virtual foram examinadas escolhendo uma que seja o menos intrusiva possível para facilitar o uso pelo paciente e que tenha as especificações necessárias para o bem funcionar da aplicação. A aplicação de realidade virtual terá então o objetivo de melhorar a marcha do paciente através do seu uso mostrando ”pégadas” que irão servir para o paciente se orientar e ajudar o paciente quando ele estiver sobre o efeito de congelamento para evitar que cause danos graves a si próprio caso ocorra numa situação complicada

    Different protocols for analyzing behavior and adaptability in obstacle crossing in Parkinson's disease

    Get PDF
    Imbalance and tripping over obstacles as a result of altered gait in older adults, especially in patients with Parkinson's disease (PD), are one of the most common causes of falls. During obstacle crossing, patients with PD modify their behavior in order to decrease the mechanical demands and enhance dynamic stability. Various descriptions of dynamic traits of gait that have been collected over longer periods, probably better synthesize the underlying structure and pattern of fluctuations in gait and can be more sensitive markers of aging or early neurological dysfunction and increased risk of falls. This confirmation challenges the clinimetric of different protocols and paradigms used for gait analysis up till now, in particular when analyzing obstacle crossing. The authors here present a critical review of current knowledge concerning the interplay between the cognition and gait in aging and PD, emphasizing the differences in gait behavior and adaptability while walking over different and challenging obstacle paradigms, and the implications of obstacle negotiation as a predictor of falls. Some evidence concerning the effectiveness of future rehabilitation protocols on reviving obstacle crossing behavior by trial and error relearning, taking advantage of dual-task paradigms, physical exercise, and virtual reality have been put forward in this article.Supported by the projects NORTE-01–0145-FEDER-000026 (DeM-Deus Ex Machina) financed by the Regional Operational Program of the North (NORTE2020) PORTUGAL2020 and FEDER, and FP7 Marie Curie ITN Neural Engineering Transformative Technologies (NETT) projectinfo:eu-repo/semantics/publishedVersio

    HapticHead - Augmenting Reality via Tactile Cues

    Get PDF
    Information overload is increasingly becoming a challenge in today's world. Humans have only a limited amount of attention to allocate between sensory channels and tend to miss or misjudge critical sensory information when multiple activities are going on at the same time. For example, people may miss the sound of an approaching car when walking across the street while looking at their smartphones. Some sensory channels may also be impaired due to congenital or acquired conditions. Among sensory channels, touch is often experienced as obtrusive, especially when it occurs unexpectedly. Since tactile actuators can simulate touch, targeted tactile stimuli can provide users of virtual reality and augmented reality environments with important information for navigation, guidance, alerts, and notifications. In this dissertation, a tactile user interface around the head is presented to relieve or replace a potentially impaired visual channel, called \emph{HapticHead}. It is a high-resolution, omnidirectional, vibrotactile display that presents general, 3D directional, and distance information through dynamic tactile patterns. The head is well suited for tactile feedback because it is sensitive to mechanical stimuli and provides a large spherical surface area that enables the display of precise 3D information and allows the user to intuitively rotate the head in the direction of a stimulus based on natural mapping. Basic research on tactile perception on the head and studies on various use cases of head-based tactile feedback are presented in this thesis. Several investigations and user studies have been conducted on (a) the funneling illusion and localization accuracy of tactile stimuli around the head, (b) the ability of people to discriminate between different tactile patterns on the head, (c) approaches to designing tactile patterns for complex arrays of actuators, (d) increasing the immersion and presence level of virtual reality applications, and (e) assisting people with visual impairments in guidance and micro-navigation. In summary, tactile feedback around the head was found to be highly valuable as an additional information channel in various application scenarios. Most notable is the navigation of visually impaired individuals through a micro-navigation obstacle course, which is an order of magnitude more accurate than the previous state-of-the-art, which used a tactile belt as a feedback modality. The HapticHead tactile user interface's ability to safely navigate people with visual impairments around obstacles and on stairs with a mean deviation from the optimal path of less than 6~cm may ultimately improve the quality of life for many people with visual impairments.Die Informationsüberlastung wird in der heutigen Welt zunehmend zu einer Herausforderung. Der Mensch hat nur eine begrenzte Menge an Aufmerksamkeit, die er zwischen den Sinneskanälen aufteilen kann, und neigt dazu, kritische Sinnesinformationen zu verpassen oder falsch einzuschätzen, wenn mehrere Aktivitäten gleichzeitig ablaufen. Zum Beispiel können Menschen das Geräusch eines herannahenden Autos überhören, wenn sie über die Straße gehen und dabei auf ihr Smartphone schauen. Einige Sinneskanäle können auch aufgrund von angeborenen oder erworbenen Erkrankungen beeinträchtigt sein. Unter den Sinneskanälen wird Berührung oft als aufdringlich empfunden, besonders wenn sie unerwartet auftritt. Da taktile Aktoren Berührungen simulieren können, können gezielte taktile Reize den Benutzern von Virtual- und Augmented Reality Anwendungen wichtige Informationen für die Navigation, Führung, Warnungen und Benachrichtigungen liefern. In dieser Dissertation wird eine taktile Benutzeroberfläche um den Kopf herum präsentiert, um einen möglicherweise beeinträchtigten visuellen Kanal zu entlasten oder zu ersetzen, genannt \emph{HapticHead}. Es handelt sich um ein hochauflösendes, omnidirektionales, vibrotaktiles Display, das allgemeine, 3D-Richtungs- und Entfernungsinformationen durch dynamische taktile Muster darstellt. Der Kopf eignet sich gut für taktiles Feedback, da er empfindlich auf mechanische Reize reagiert und eine große sphärische Oberfläche bietet, die die Darstellung präziser 3D-Informationen ermöglicht und es dem Benutzer erlaubt, den Kopf aufgrund der natürlichen Zuordnung intuitiv in die Richtung eines Reizes zu drehen. Grundlagenforschung zur taktilen Wahrnehmung am Kopf und Studien zu verschiedenen Anwendungsfällen von kopfbasiertem taktilem Feedback werden in dieser Arbeit vorgestellt. Mehrere Untersuchungen und Nutzerstudien wurden durchgeführt zu (a) der Funneling Illusion und der Lokalisierungsgenauigkeit von taktilen Reizen am Kopf, (b) der Fähigkeit von Menschen, zwischen verschiedenen taktilen Mustern am Kopf zu unterscheiden, (c) Ansätzen zur Gestaltung taktiler Muster für komplexe Arrays von Aktoren, (d) der Erhöhung des Immersions- und Präsenzgrades von Virtual-Reality-Anwendungen und (e) der Unterstützung von Menschen mit Sehbehinderungen bei der Führung und Mikronavigation. Zusammenfassend wurde festgestellt, dass taktiles Feedback um den Kopf herum als zusätzlicher Informationskanal in verschiedenen Anwendungsszenarien sehr wertvoll ist. Am interessantesten ist die Navigation von sehbehinderten Personen durch einen Mikronavigations-Hindernisparcours, welche um eine Größenordnung präziser ist als der bisherige Stand der Technik, der einen taktilen Gürtel als Feedback-Modalität verwendete. Die Fähigkeit der taktilen Benutzerschnittstelle HapticHead, Menschen mit Sehbehinderungen mit einer mittleren Abweichung vom optimalen Pfad von weniger als 6~cm sicher um Hindernisse und auf Treppen zu navigieren, kann letztendlich die Lebensqualität vieler Menschen mit Sehbehinderungen verbessern

    State of the art review on walking support system for visually impaired people

    Get PDF
    The technology for terrain detection and walking support system for blind people has rapidly been improved the last couple of decades but to assist visually impaired people may have started long ago. Currently, a variety of portable or wearable navigation system is available in the market to help the blind for navigating their way in his local or remote area. The focused category in this work can be subgroups as electronic travel aids (ETAs), electronic orientation aids (EOAs) and position locator devices (PLDs). However, we will focus mainly on electronic travel aids (ETAs). This paper presents a comparative survey among the various portable or wearable walking support systems as well as informative description (a subcategory of ETAs or early stages of ETAs) with its working principal advantages and disadvantages so that the researchers can easily get the current stage of assisting blind technology along with the requirement for optimising the design of walking support system for its users

    Echoic Sensory Substitution Information in a Single Obstacle Circumvention Task.

    Get PDF
    Accurate motor control is required when walking around obstacles in order to avoid collisions. When vision is unavailable, sensory substitution can be used to improve locomotion through the environment. Tactile sensory substitution devices (SSDs) are electronic travel aids, some of which indicate the distance of an obstacle using the rate of vibration of a transducer on the skin. We investigated how accurately such an SSD guided navigation in an obstacle circumvention task. Using an SSD, 12 blindfolded participants navigated around a single flat 0.6 x 2 m obstacle. A 3-dimensional Vicon motion capture system was used to quantify various kinematic indices of human movement. Navigation performance under full vision was used as a baseline for comparison. The obstacle position was varied from trial to trial relative to the participant, being placed at two distances 25 cm to the left, right or directly ahead. Under SSD guidance, participants navigated without collision in 93% of trials. No collisions occurred under visual guidance. Buffer space (clearance between the obstacle and shoulder) was larger by a factor of 2.1 with SSD guidance than with visual guidance, movement times were longer by a factor of 9.4, and numbers of velocity corrections were larger by a factor of 5 (all p<0.05). Participants passed the obstacle on the side affording the most space in the majority of trials for both SSD and visual guidance conditions. The results are consistent with the idea that SSD information can be used to generate a protective envelope during locomotion in order to avoid collisions when navigating around obstacles, and to pass on the side of the obstacle affording the most space in the majority of trials.Vision and Eye Research Unit, Postgraduate Medical Institute at Anglia Ruskin University; Medical Research Council (Grant ID: G0701870)This is the final version of the article. It first appeared from the Public Library of Science via http://dx.doi.org/10.1371/journal.pone.016087
    • …
    corecore