1,463 research outputs found

    Computer Vision based Intelligent Lane Detection and Warning System: A Design Approach

    Get PDF
    In Intelligent Transport System (ITS), prevention from accident is one of prominent area of research in which various approaches are implemented and proposed to assist and warn driver from accidents. As a part of warning system lane departure technique is widely considered, that monitor vehicle’s movement , and warn driver before lane departure which will prevent driver from head on collision. Hence it’s a matter of motivation for developing such a system which can detect lane marks on road and warn driver on any conditions. Due to variety of availability of tools and techniques, several methods where proposed by different authors which are discussed in this paper with their pros and cons that will help us to decide better one according to one’s specific conditions or need

    A computer vision-based lane detection technique using gradient threshold and hue-lightness-saturation value for an autonomous vehicle

    Get PDF
    Automatic lane detection for driver assistance is a significant component in developing advanced driver assistance systems and high-level application frameworks since it contributes to driver and pedestrian safety on roads and highways. However, due to several limitations that lane detection systems must rectify, such as the uncertainties of lane patterns, perspective consequences, limited visibility of lane lines, dark spots, complex background, illuminance, and light reflections, it remains a challenging task. The proposed method employs vision-based technologies to determine the lane boundary lines. We devised a system for correctly identifying lane lines on a homogeneous road surface. Lane line detection relies heavily on the gradient and hue lightness saturation (HLS) thresholding which detects the lane line in binary images. The lanes are shown, and a sliding window searching method is used to estimate the color lane. The proposed system achieved 96% accuracy in detecting lane lines on the different roads, and its performance was assessed using data from several road image databases under various illumination circumstances

    Improving Multiple Object Tracking with Optical Flow and Edge Preprocessing

    Full text link
    In this paper, we present a new method for detecting road users in an urban environment which leads to an improvement in multiple object tracking. Our method takes as an input a foreground image and improves the object detection and segmentation. This new image can be used as an input to trackers that use foreground blobs from background subtraction. The first step is to create foreground images for all the frames in an urban video. Then, starting from the original blobs of the foreground image, we merge the blobs that are close to one another and that have similar optical flow. The next step is extracting the edges of the different objects to detect multiple objects that might be very close (and be merged in the same blob) and to adjust the size of the original blobs. At the same time, we use the optical flow to detect occlusion of objects that are moving in opposite directions. Finally, we make a decision on which information we keep in order to construct a new foreground image with blobs that can be used for tracking. The system is validated on four videos of an urban traffic dataset. Our method improves the recall and precision metrics for the object detection task compared to the vanilla background subtraction method and improves the CLEAR MOT metrics in the tracking tasks for most videos

    Automatic segmentation and reconstruction of traffic accident scenarios from mobile laser scanning data

    Get PDF
    Virtual reconstruction of historic sites, planning of restorations and attachments of new building parts, as well as forest inventory are few examples of fields that benefit from the application of 3D surveying data. Originally using 2D photo based documentation and manual distance measurements, the 3D information obtained from multi camera and laser scanning systems realizes a noticeable improvement regarding the surveying times and the amount of generated 3D information. The 3D data allows a detailed post processing and better visualization of all relevant spatial information. Yet, for the extraction of the required information from the raw scan data and for the generation of useable visual output, time-consuming, complex user-based data processing is still required, using the commercially available 3D software tools. In this context, the automatic object recognition from 3D point cloud and depth data has been discussed in many different works. The developed tools and methods however, usually only focus on a certain kind of object or the detection of learned invariant surface shapes. Although the resulting methods are applicable for certain practices of data segmentation, they are not necessarily suitable for arbitrary tasks due to the varying requirements of the different fields of research. This thesis presents a more widespread solution for automatic scene reconstruction from 3D point clouds, targeting street scenarios, specifically for the task of traffic accident scene analysis and documentation. The data, obtained by sampling the scene using a mobile scanning system is evaluated, segmented, and finally used to generate detailed 3D information of the scanned environment. To realize this aim, this work adapts and validates various existing approaches on laser scan segmentation regarding the application on accident relevant scene information, including road surfaces and markings, vehicles, walls, trees and other salient objects. The approaches are therefore evaluated regarding their suitability and limitations for the given tasks, as well as for possibilities concerning the combined application together with other procedures. The obtained knowledge is used for the development of new algorithms and procedures to allow a satisfying segmentation and reconstruction of the scene, corresponding to the available sampling densities and precisions. Besides the segmentation of the point cloud data, this thesis presents different visualization and reconstruction methods to achieve a wider range of possible applications of the developed system for data export and utilization in different third party software tools

    Risk analysis of autonomous vehicle and its safety impact on mixed traffic stream

    Get PDF
    In 2016, more than 35,000 people died in traffic crashes, and human error was the reason for 94% of these deaths. Researchers and automobile companies are testing autonomous vehicles in mixed traffic streams to eliminate human error by removing the human driver behind the steering wheel. However, recent autonomous vehicle crashes while testing indicate the necessity for a more thorough risk analysis. The objectives of this study were (1) to perform a risk analysis of autonomous vehicles and (2) to evaluate the safety impact of these vehicles in a mixed traffic stream. The overall research was divided into two phases: (1) risk analysis and (2) simulation of autonomous vehicles. Risk analysis of autonomous vehicles was conducted using the fault tree method. Based on failure probabilities of system components, two fault tree models were developed and combined to predict overall system reliability. It was found that an autonomous vehicle system could fail 158 times per one-million miles of travel due to either malfunction in vehicular components or disruption from infrastructure components. The second phase of this research was the simulation of an autonomous vehicle, where change in crash frequency after autonomous vehicle deployment in a mixed traffic stream was assessed. It was found that average travel time could be reduced by about 50%, and 74% of conflicts, i.e., traffic crashes, could be avoided by replacing 90% of the human drivers with autonomous vehicles

    A novel processing methodology for traffic-speed road surveys using point lasers

    Get PDF
    The rapidly increasing traffic volumes using local road networks allied to the implications of climate change drive the demand for cost-effective, reliable and accurate road condition assessment. A particular concern for local road asset managers is the loss of material from the road surface known as fretting which unchecked can lead to potholes. In order to assess the road condition quantitatively and affordably, a system should be designed with low complexity, be capable of operating in a variety of weather conditions and operate at normal traffic-speeds. Many different techniques have been developed for road condition assessment such as ground penetrating radar, visual sensors and mobile scanning lasers. In this work, the use of the point laser technique for scanning the road surface is investigated. It has the advantages of being sufficiently accurate, is relatively unaffected by levels of illumination and it produces relatively low volumes of data. In this work, road fretting/surface disintegration was determined using a novel signal processing approach which considers a number of features of reflected laser signals. The proposed methodology was demonstrated using data collected from the UK's local road network. The experimental results indicate that the proposed system can assess road fretting to an accuracy which is comparable to a visual inspection, and at Information Quality Level (IQL) 3 which is sufficient for tactical road asset management whereby road sections requiring treatment are selected and appropriate treatments identified

    Integrated Vehicular System with Black Box Capability and Intelligent Driving Diagnosis

    Get PDF
    Hoy en día, una de las causas de las altas tasas de mortalidad en el mundo son los accidentes de tránsito. Según la Organización Mundial de la Salud (OMS), los accidentes de tránsito alcanzan más de 1.3 millones de víctimas anuales en el mundo; y sólo en Colombia más de 5000 víctimas al año. Por esta razón, esta investigación presenta el desarrollo de un “Agente para el Diagnóstico Inteligente de Conducción”, implementado mediante un algoritmo de Lógica Difusa. Con la aproximación computacional del conocimiento experto en conducción vehicular, este trabajo permite realizar el diagnóstico de las maniobras del conductor de manera que se pueda determinar si son riesgosas o si no lo son. Los experimentos fueron realizados bajo condiciones reales de “conducción segura” en la ciudad de Barranquilla. Los resultados muestran que se puede lograr un diagnóstico inteligente de conducción gracias al “Agente para el Diagnóstico Inteligente de Conducción” propuesto
    corecore