1,358 research outputs found

    Challenges with bearings only tracking for missile guidance systems and how to cope with them.

    Get PDF
    This paper addresses the problem of closed loop missile guidance using bearings and target angular extent information. Comparison is performed between particle filtering methods and derivative free methods. The extent information characterizes target size and we show how this can help compensate for observability problems. We demonstrate that exploiting angular extent information improves filter estimation accuracy. The performance of the filters has been studied over a testing scenario with a static target, with respect to accuracy, sensitivity to perturbations in initial conditions and in different seeker modes (active, passive and semi-active)

    Multi-Object Tracking with Interacting Vehicles and Road Map Information

    Full text link
    In many applications, tracking of multiple objects is crucial for a perception of the current environment. Most of the present multi-object tracking algorithms assume that objects move independently regarding other dynamic objects as well as the static environment. Since in many traffic situations objects interact with each other and in addition there are restrictions due to drivable areas, the assumption of an independent object motion is not fulfilled. This paper proposes an approach adapting a multi-object tracking system to model interaction between vehicles, and the current road geometry. Therefore, the prediction step of a Labeled Multi-Bernoulli filter is extended to facilitate modeling interaction between objects using the Intelligent Driver Model. Furthermore, to consider road map information, an approximation of a highly precise road map is used. The results show that in scenarios where the assumption of a standard motion model is violated, the tracking system adapted with the proposed method achieves higher accuracy and robustness in its track estimations

    Robust Gaussian Filtering using a Pseudo Measurement

    Full text link
    Many sensors, such as range, sonar, radar, GPS and visual devices, produce measurements which are contaminated by outliers. This problem can be addressed by using fat-tailed sensor models, which account for the possibility of outliers. Unfortunately, all estimation algorithms belonging to the family of Gaussian filters (such as the widely-used extended Kalman filter and unscented Kalman filter) are inherently incompatible with such fat-tailed sensor models. The contribution of this paper is to show that any Gaussian filter can be made compatible with fat-tailed sensor models by applying one simple change: Instead of filtering with the physical measurement, we propose to filter with a pseudo measurement obtained by applying a feature function to the physical measurement. We derive such a feature function which is optimal under some conditions. Simulation results show that the proposed method can effectively handle measurement outliers and allows for robust filtering in both linear and nonlinear systems

    On particle filters in radar target tracking

    Get PDF
    The dissertation focused on the research, implementation, and evaluation of particle filters for radar target track filtering of a maneuvering target, through quantitative simulations and analysis thereof. Target track filtering, also called target track smoothing, aims to minimize the error between a radar target's predicted and actual position. From the literature it had been suggested that particle filters were more suitable for filtering in non-linear/non-Gaussian systems. Furthermore, it had been determined that particle filters were a relatively newer field of research relating to radar target track filtering for non-linear, non-Gaussian maneuvering target tracking problems, compared to the more traditional and widely known and implemented approaches and techniques. The objectives of the research project had been achieved through the development of a software radar target tracking filter simulator, which implemented a sequential importance re-sampling particle filter algorithm and suitable target and noise models. This particular particle filter had been identified from a review of the theory of particle filters. The theory of the more conventional tracking filters used in radar applications had also been reviewed and discussed. The performance of the sequential importance re-sampling particle filter for radar target track filtering had been evaluated through quantitative simulations and analysis thereof, using predefined metrics identified from the literature. These metrics had been the root mean squared error metric for accuracy, and the normalized processing time metric for computational complexity. It had been shown that the sequential importance re-sampling particle filter achieved improved accuracy performance in the track filtering of a maneuvering radar target in a non-Gaussian (Laplacian) noise environment, compared to a Gaussian noise environment. It had also been shown that the accuracy performance of the sequential importance re-sampling particle filter is a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The sequential importance re-sampling particle filter had also been compared to two conventional tracking filters, namely the alpha-beta filter and the Singer-Kalman filter, and had better accuracy performance in both cases. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be a function of the number of particles used in the sequential importance re-sampling particle filter algorithm. The normalized processing time of the sequential importance re-sampling particle filter had been shown to be higher than that of both the alpha-beta filter and the Singer-Kalman filter. Analysis of the posterior Cramér-Rao lower bound of the sequential importance re-sampling particle filter had also been conducted and presented in the dissertation

    Air-to-Air Missile Vector Scoring

    Get PDF
    An air-to-air missile vector scoring system is proposed for test and evaluation applications. Three different linear missile dynamics models are considered: a six-state constant velocity model and nine-state constant acceleration and three-dimensional coordinated turn models. Frequency modulated continuous wave radar sensors, carefully located to provide spherical coverage around the target, provide updates of missile kinematic information relative to a drone aircraft. Data from the radar sensors is fused with predictions from one of the three missile models using either an extended Kalman filter, an unscented Kalman filter or a particle filter algorithm. The performance of all nine model/filter combinations are evaluated through high-fidelity, six-degree of freedom simulations yielding sub-meter end-game accuracy in a variety of scenarios. Simulations demonstrate the superior performance of the unscented Kalman filter incorporating the continuous velocity dynamics model. The scoring system is experimentally demonstrated through flight testing using commercial off the shelf radar sensors with a Beechcraft C-12 as a surrogate missile
    • …
    corecore