1,344 research outputs found

    Real-time visual detection and tracking system for traffic monitoring

    Get PDF
    Computer vision systems for traffic monitoring represent an essential tool for a broad range of traffic surveillance applications. Two of the most noteworthy challenges for these systems are the real-time operation with hundreds of vehicles and the total occlusions which hinder the tracking of the vehicles. In this paper, we present a traffic monitoring approach that deals with these two challenges based on three modules: detection, tracking and data association. First, vehicles are identified through a deep learning based detector. Second, tracking is performed with a combination of a Discriminative Correlation Filter and a Kalman Filter. This permits to estimate the tracking error in order to make tracking more robust and reliable. Finally, the data association through the Hungarian algorithm combines the information of the previous steps. The contributions are: (i) a real-time traffic monitoring system robust to occlusions that can process more than four hundred vehicles simultaneously; and (ii) the application of the system to anomaly detection in traffic and roundabout input/output analysis. The system has been evaluated with more than two thousand vehicles in real-life videosThis research was partially funded by the Spanish Ministry of Science and Innovation under grants TIN2017-84796-C2-1-R and RTI2018-097088-B-C32, and the Galician Ministry of Education, Culture and Universities under grant ED431G/08. Mauro Fernández is supported by the Spanish Ministry of Economy and Competitiveness under grant BES-2015-071889. These grants are co-funded by the European Regional Development Fund (ERDF/FEDER program)S

    SALSA: A Novel Dataset for Multimodal Group Behavior Analysis

    Get PDF
    Studying free-standing conversational groups (FCGs) in unstructured social settings (e.g., cocktail party ) is gratifying due to the wealth of information available at the group (mining social networks) and individual (recognizing native behavioral and personality traits) levels. However, analyzing social scenes involving FCGs is also highly challenging due to the difficulty in extracting behavioral cues such as target locations, their speaking activity and head/body pose due to crowdedness and presence of extreme occlusions. To this end, we propose SALSA, a novel dataset facilitating multimodal and Synergetic sociAL Scene Analysis, and make two main contributions to research on automated social interaction analysis: (1) SALSA records social interactions among 18 participants in a natural, indoor environment for over 60 minutes, under the poster presentation and cocktail party contexts presenting difficulties in the form of low-resolution images, lighting variations, numerous occlusions, reverberations and interfering sound sources; (2) To alleviate these problems we facilitate multimodal analysis by recording the social interplay using four static surveillance cameras and sociometric badges worn by each participant, comprising the microphone, accelerometer, bluetooth and infrared sensors. In addition to raw data, we also provide annotations concerning individuals' personality as well as their position, head, body orientation and F-formation information over the entire event duration. Through extensive experiments with state-of-the-art approaches, we show (a) the limitations of current methods and (b) how the recorded multiple cues synergetically aid automatic analysis of social interactions. SALSA is available at http://tev.fbk.eu/salsa.Comment: 14 pages, 11 figure

    Towards agent-based crowd simulation in airports using games technology

    Get PDF
    We adapt popular video games technology for an agent-based crowd simulation in an airport terminal. To achieve this, we investigate the unique traits of airports and implement a virtual crowd by exploiting a scalable layered intelligence technique in combination with physics middleware and a socialforces approach. Our experiments show that the framework runs at interactive frame-rate and evaluate the scalability with increasing number of agents demonstrating navigation behaviour

    Privacy Vulnerabilities in the Practices of Repairing Broken Digital Artifacts in Bangladesh

    Get PDF
    This paper presents a study on the privacy concerns associated with the practice of repairing broken digital objects in Bangladesh. Historically, repair of old or broken technologies has received less attention in ICTD scholarship than design, development, or use. As a result, the potential privacy risks associated with repair practices have remained mostly unaddressed. This paper describes our three-month long ethnographic study that took place at ten major repair sites in Dhaka, Bangladesh. We show a variety of ways in which the privacy of an individual’s personal data may be compromised during the repair process. We also examine people’s perceptions around privacy in repair, and its connections with their broader social and cultural values. Finally, we discuss the challenges and opportunities for future research to strengthen the repair ecosystem in developing countries. Taken together, our findings contribute to the growing discourse around post-use cycles of technology

    The 2018 NVIDIA AI City Challenge

    Get PDF
    The NVIDIA AI City Challenge has been created to accelerate intelligent video analysis that helps make cities smarter and safer. With millions of traffic video cameras acting as sensors around the world, there is a significant opportunity for real-time and batch analysis of these videos to provide actionable insights. These insights will benefit a wide variety of agencies, from traffic control to public safety. The second edition of the NVIDIA AI City Challenge, being organized as a CVPR workshop, provided a forum to more than 70 academic and industrial research teams to compete and solve real-world problems using traffic camera video data. The Challenge was launched with three tracks — speed estimation, anomaly detection, and vehicle re-identification. Each track was chosen in consultation with traffic and public safety officials based on the value of potential solutions. With the largest available dataset for such tasks, and ground truth for each track, the Challenge enabled 22 teams to evaluate their solutions. Given how complex these tasks are, the results are encouraging and reflect increased value addition year over year for the Challenge

    Deep learning for small object detection

    Get PDF
    Small object detection has become increasingly relevant due to the fact that the performance of common object detectors falls significantly as objects become smaller. Many computer vision applications require the analysis of the entire set of objects in the image, including extremely small objects. Moreover, the detection of small objects allows to perceive objects at a greater distance, thus giving more time to adapt to any situation or unforeseen event

    Randomized controlled trial of a coordinated care intervention to improve risk factor control after stroke or transient ischemic attack in the safety net: Secondary stroke prevention by Uniting Community and Chronic care model teams Early to End Disparities (SUCCEED).

    Get PDF
    BackgroundRecurrent strokes are preventable through awareness and control of risk factors such as hypertension, and through lifestyle changes such as healthier diets, greater physical activity, and smoking cessation. However, vascular risk factor control is frequently poor among stroke survivors, particularly among socio-economically disadvantaged blacks, Latinos and other people of color. The Chronic Care Model (CCM) is an effective framework for multi-component interventions aimed at improving care processes and outcomes for individuals with chronic disease. In addition, community health workers (CHWs) have played an integral role in reducing health disparities; however, their effectiveness in reducing vascular risk among stroke survivors remains unknown. Our objectives are to develop, test, and assess the economic value of a CCM-based intervention using an Advanced Practice Clinician (APC)-CHW team to improve risk factor control after stroke in an under-resourced, racially/ethnically diverse population.Methods/designIn this single-blind randomized controlled trial, 516 adults (≥40 years) with an ischemic stroke, transient ischemic attack or intracerebral hemorrhage within the prior 90 days are being enrolled at five sites within the Los Angeles County safety-net setting and randomized 1:1 to intervention vs usual care. Participants are excluded if they do not speak English, Spanish, Cantonese, Mandarin, or Korean or if they are unable to consent. The intervention includes a minimum of three clinic visits in the healthcare setting, three home visits, and Chronic Disease Self-Management Program group workshops in community venues. The primary outcome is blood pressure (BP) control (systolic BP <130 mmHg) at 1 year. Secondary outcomes include: (1) mean change in systolic BP; (2) control of other vascular risk factors including lipids and hemoglobin A1c, (3) inflammation (C reactive protein [CRP]), (4) medication adherence, (5) lifestyle factors (smoking, diet, and physical activity), (6) estimated relative reduction in risk for recurrent stroke or myocardial infarction (MI), and (7) cost-effectiveness of the intervention versus usual care.DiscussionIf this multi-component interdisciplinary intervention is shown to be effective in improving risk factor control after stroke, it may serve as a model that can be used internationally to reduce race/ethnic and socioeconomic disparities in stroke in resource-constrained settings.Trial registrationClinicalTrials.gov Identifier NCT01763203
    • …
    corecore