23 research outputs found

    Non-Compositional Term Dependence for Information Retrieval

    Full text link
    Modelling term dependence in IR aims to identify co-occurring terms that are too heavily dependent on each other to be treated as a bag of words, and to adapt the indexing and ranking accordingly. Dependent terms are predominantly identified using lexical frequency statistics, assuming that (a) if terms co-occur often enough in some corpus, they are semantically dependent; (b) the more often they co-occur, the more semantically dependent they are. This assumption is not always correct: the frequency of co-occurring terms can be separate from the strength of their semantic dependence. E.g. "red tape" might be overall less frequent than "tape measure" in some corpus, but this does not mean that "red"+"tape" are less dependent than "tape"+"measure". This is especially the case for non-compositional phrases, i.e. phrases whose meaning cannot be composed from the individual meanings of their terms (such as the phrase "red tape" meaning bureaucracy). Motivated by this lack of distinction between the frequency and strength of term dependence in IR, we present a principled approach for handling term dependence in queries, using both lexical frequency and semantic evidence. We focus on non-compositional phrases, extending a recent unsupervised model for their detection [21] to IR. Our approach, integrated into ranking using Markov Random Fields [31], yields effectiveness gains over competitive TREC baselines, showing that there is still room for improvement in the very well-studied area of term dependence in IR

    Information retrieval (Part 2):Document representations

    Get PDF

    The successful application of natural language processing for information retrieval

    Get PDF
    In this paper, a novel model for monolingual Information Retrieval in English and Spanish language is proposed. This model uses Natural Language Processing techniques (a POStagger, a Partial Parser, and an Anaphora Resolver) in order to improve the precision of traditional IR systems, by means of indexing the "entities" and the "relations" between these entities in the documents. This model is evaluated on both the Spanish and English CLEF corpora. For the English queries, there is a maximum increase of 35.11% in the average precision. For the Spanish queries, the maximum increase is 37.18%.Facultad de Informátic

    Automatic indexing : an approach using an index term corpus and combining linguistic and statistical methods

    Get PDF
    This thesis discusses the problems and the methods of finding relevant information in large collections of documents. The contribution of this thesis to this problem is to develop better content analysis methods which can be used to describe document content with index terms. Index terms can be used as meta-information that describes documents, and that is used for seeking information. The main point of this thesis is to illustrate the process of developing an automatic indexer which analyses the content of documents by combining evidence from word frequencies and evidence from linguistic analysis provided by a syntactic parser. The indexer weights the expressions of a text according to their estimated importance for describing the content of a given document on the basis of the content analysis. The typical linguistic features of index terms were explored using a linguistically analysed text collection where the index terms are manually marked up. This text collection is referred to as an index term corpus. Specific features of the index terms provided the basis for a linguistic term-weighting scheme, which was then combined with a frequency-based term-weighting scheme. The use of an index term corpus like this as training material is a new method of developing an automatic indexer. The results of the experiments were promising

    Compound terms for information retrieval

    Full text link
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Proceedings of the Third Dutch-Belgian Information Retrieval Workshop (DIR 2002)

    Get PDF

    Semi-automated Ontology Generation for Biocuration and Semantic Search

    Get PDF
    Background: In the life sciences, the amount of literature and experimental data grows at a tremendous rate. In order to effectively access and integrate these data, biomedical ontologies – controlled, hierarchical vocabularies – are being developed. Creating and maintaining such ontologies is a difficult, labour-intensive, manual process. Many computational methods which can support ontology construction have been proposed in the past. However, good, validated systems are largely missing. Motivation: The biocuration community plays a central role in the development of ontologies. Any method that can support their efforts has the potential to have a huge impact in the life sciences. Recently, a number of semantic search engines were created that make use of biomedical ontologies for document retrieval. To transfer the technology to other knowledge domains, suitable ontologies need to be created. One area where ontologies may prove particularly useful is the search for alternative methods to animal testing, an area where comprehensive search is of special interest to determine the availability or unavailability of alternative methods. Results: The Dresden Ontology Generator for Directed Acyclic Graphs (DOG4DAG) developed in this thesis is a system which supports the creation and extension of ontologies by semi-automatically generating terms, definitions, and parent-child relations from text in PubMed, the web, and PDF repositories. The system is seamlessly integrated into OBO-Edit and Protégé, two widely used ontology editors in the life sciences. DOG4DAG generates terms by identifying statistically significant noun-phrases in text. For definitions and parent-child relations it employs pattern-based web searches. Each generation step has been systematically evaluated using manually validated benchmarks. The term generation leads to high quality terms also found in manually created ontologies. Definitions can be retrieved for up to 78% of terms, child ancestor relations for up to 54%. No other validated system exists that achieves comparable results. To improve the search for information on alternative methods to animal testing an ontology has been developed that contains 17,151 terms of which 10% were newly created and 90% were re-used from existing resources. This ontology is the core of Go3R, the first semantic search engine in this field. When a user performs a search query with Go3R, the search engine expands this request using the structure and terminology of the ontology. The machine classification employed in Go3R is capable of distinguishing documents related to alternative methods from those which are not with an F-measure of 90% on a manual benchmark. Approximately 200,000 of the 19 million documents listed in PubMed were identified as relevant, either because a specific term was contained or due to the automatic classification. The Go3R search engine is available on-line under www.Go3R.org
    corecore