7,980 research outputs found

    Transitioning Applications to Semantic Web Services: An Automated Formal Approach

    No full text
    Semantic Web Services have been recognized as a promising technology that exhibits huge commercial potential, and attract significant attention from both industry and the research community. Despite expectations being high, the industrial take-up of Semantic Web Service technologies has been slower than expected. One of the main reasons is that many systems have been developed without considering the potential of the web in integrating services and sharing resources. Without a systematic methodology and proper tool support, the migration from legacy systems to Semantic Web Service-based systems can be a very tedious and expensive process, which carries a definite risk of failure. There is an urgent need to provide strategies which allow the migration of legacy systems to Semantic Web Services platforms, and also tools to support such a strategy. In this paper we propose a methodology for transitioning these applications to Semantic Web Services by taking the advantage of rigorous mathematical methods. Our methodology allows users to migrate their applications to Semantic Web Services platform automatically or semi-automatically

    A semi-automated digital preservation system based on semantic Web services

    Get PDF
    This paper describes a Web-services-based system which we have developed to enable organizations to semi -automatically preserve their digital collections by dynamically discovering and invoking the most appropriate preservation service, as it is required. By periodically comparing preservation metadata for digital objects in a collection with a software version registry, potential object obsolescence can be detected and a notification message sent to the relevant agent. By making preservation software modules available as Web services and describing them semantically using a machine-processable ontology (OWL-S), the most appropriate preservation service(s) for each object can then be automatically discovered, composed and invoked by software agents (with optional human input at critical decision-making steps). We believe that this approach represents a significant advance towards providing a viable, cost-effective solution to the long term preservation of large-scale collections of digital objects

    Automatic annotation of bioinformatics workflows with biomedical ontologies

    Full text link
    Legacy scientific workflows, and the services within them, often present scarce and unstructured (i.e. textual) descriptions. This makes it difficult to find, share and reuse them, thus dramatically reducing their value to the community. This paper presents an approach to annotating workflows and their subcomponents with ontology terms, in an attempt to describe these artifacts in a structured way. Despite a dearth of even textual descriptions, we automatically annotated 530 myExperiment bioinformatics-related workflows, including more than 2600 workflow-associated services, with relevant ontological terms. Quantitative evaluation of the Information Content of these terms suggests that, in cases where annotation was possible at all, the annotation quality was comparable to manually curated bioinformatics resources.Comment: 6th International Symposium on Leveraging Applications (ISoLA 2014 conference), 15 pages, 4 figure

    Improving Schema Mapping by Exploiting Domain Knowledge

    Get PDF
    This dissertation addresses the problem of semi-automatically creating schema mappings. The need for developing schema mappings is a pervasive problem in many integration scenarios. Although the problem is well-known and a large body of work exists in the area, the development of schema mappings is today largely performed manually in industrial integration scenarios. In this thesis an approach for the semi-automatic creation of high quality schema mappings is developed

    Ontology-based model abstraction

    Get PDF
    In recent years, there has been a growth in the use of reference conceptual models to capture information about complex and critical domains. However, as the complexity of domain increases, so does the size and complexity of the models that represent them. Over the years, different techniques for complexity management in large conceptual models have been developed. In particular, several authors have proposed different techniques for model abstraction. In this paper, we leverage on the ontologically well-founded semantics of the modeling language OntoUML to propose a novel approach for model abstraction in conceptual models. We provide a precise definition for a set of Graph-Rewriting rules that can automatically produce much-reduced versions of OntoUML models that concentrate the modelsā€™ information content around the ontologically essential types in that domain, i.e., the so-called Kinds. The approach has been implemented using a model-based editor and tested over a repository of OntoUML models

    Transition of legacy systems to semantically enabled applications:TAO method and tools

    Get PDF
    Despite expectations being high, the industrial take-up of Semantic Web technologies in developing services and applications has been slower than expected. One of the main reasons is that many legacy systems have been developed without considering the potential of theWeb in integrating services and sharing resources.Without a systematic methodology and proper tool support, the migration from legacy systems to SemanticWeb Service-based systems can be a tedious and expensive process, which carries a significant risk of failure. There is an urgent need to provide strategies, allowing the migration of legacy systems to Semantic Web Services platforms, and also tools to support such strategies. In this paper we propose a methodology and its tool support for transitioning these applications to Semantic Web Services, which allow users to migrate their applications to Semantic Web Services platforms automatically or semi-automatically. The transition of the GATE system is used as a case study

    Definitions in ontologies

    Get PDF
    Definitions vary according to context of use and target audience. They must be made relevant for each context to fulfill their cognitive and linguistic goals. This involves adapting their logical structure, type of content, and form to each context of use. We examine from these perspectives the case of definitions in ontologies

    Ontology-Based Resolution of Cloud Data Lock-in Problem

    Get PDF
    Cloud computing is nowadays becoming a popular paradigm for the provision of computing infrastructure that enables organizations to achieve financial savings. On the other hand, there are some known obstacles, among which vendor lock-in stands out. Furthermore, due to missing standards and heterogeneities of cloud storage systems, the migration of data to alternative cloud providers is expensive and time-consuming. We propose an approach based on Semantic Web services and AI planning to tackle cloud vendor data lock-in problem. To complete the mentioned task, data structures and data type mapping rules between different types of cloud storage systems are defined. The migration of data among different providers of platform as a service is presented in order to prove the practical applicability of the proposed approach. Additionally, this concept was also applied to software as a service model of cloud computing to perform one-shot data migration from Zoho CRM to Salesforce CRM
    • ā€¦
    corecore