138 research outputs found

    Obfuscating Against Side-Channel Power Analysis Using Hiding Techniques for AES

    Get PDF
    The transfer of information has always been an integral part of military and civilian operations, and remains so today. Because not all information we share is public, it is important to secure our data from unwanted parties. Message encryption serves to prevent all but the sender and recipient from viewing any encrypted information as long as the key stays hidden. The Advanced Encryption Standard (AES) is the current industry and military standard for symmetric-key encryption. While AES remains computationally infeasible to break the encrypted message stream, it is susceptible to side-channel attacks if an adversary has access to the appropriate hardware. The most common and effective side-channel attack on AES is Differential Power Analysis (DPA). Thus, countermeasures to DPA are crucial to data security. This research attempts to evaluate and combine two hiding DPA countermeasures in an attempt to further hinder side-channel analysis of AES encryption. Analysis of DPA attack success before and after the countermeasures is used to determine effectiveness of the protection techniques. The results are measured by evaluating the number of traces required to attack the circuit and by measuring the signal-to-noise ratios

    Lightweight PUF-Based Gate Replacement Technique to Reduce Leakage of Information through Power Profile Analysis

    Get PDF
    The major challenge faced by electronic device designers is to defend the system from attackers and malicious modules called Hardware Trojans and to deliver a secured design. Although there are many cryptographic preventive measures in place adversaries find different ways to attack the device. Differential Power Analysis (DPA) attack is a type of Side Channel Attacks, used by an attacker to analyze the power leakage in the circuit, through which the functionality of the circuit is extracted. To overcome this, a lightweight approach is proposed in this paper using, Wave Dynamic Differential Logic (WDDL) technique, without incurring any additional resource cost and power. The primary objective of WDDL is to make the power consumption constant of an entire circuit by restricting the leakage power. The alternate strategy used by an adversary is to leak the information through reverse engineering. The proposed work avoids this by using a bit sequencer and a modified butterfly PUF based randomizing architecture. A modified version of butterfly PUF is also proposed in this paper, and from various qualitative tests performed it is evident that this PUF can prevent information leakage. This work is validated on ISCAS 85, ISCAS 89 benchmark circuits and the results obtained indicate that the difference in leakage power is found to be very marginal

    Circuit-Variant Moving Target Defense for Side-Channel Attacks on Reconfigurable Hardware

    Get PDF
    With the emergence of side-channel analysis (SCA) attacks, bits of a secret key may be derived by correlating key values with physical properties of cryptographic process execution. Power and Electromagnetic (EM) analysis attacks are based on the principle that current flow within a cryptographic device is key-dependent and therefore, the resulting power consumption and EM emanations during encryption and/or decryption can be correlated to secret key values. These side-channel attacks require several measurements of the target process in order to amplify the signal of interest, filter out noise, and derive the secret key through statistical analysis methods. Differential power and EM analysis attacks rely on correlating actual side-channel measurements to hypothetical models. This research proposes increasing resistance to differential power and EM analysis attacks through structural and spatial randomization of an implementation. By introducing randomly located circuit variants of encryption components, the proposed moving target defense aims to disrupt side-channel collection and correlation needed to successfully implement an attac

    Side Channel Resistance Evaluation and Measurement

    Get PDF
    While unknown to most people, hardware implementation attacks provide a serious adversary for systems that contain sensitive data. Mission critical information can be extracted from a design with little effort from an attacker when they have access to the physical hardware. Thus designers try to mitigate this problem by using unique countermeasures styles. This work presents the first practical differential power analysis security evaluation of a countermeasure style called t-private logic. A PRESENT block cipher S-Box was implemented on a Virtex 5 FPGA as a reference platform. Both hardware and simulated power traces were collected. Statistical analyses were performed (CPA and Correlation enhanced collision attack) and our results revealed a first-order side channel attack vulnerability

    Electromagnetic Transmission of Intellectual Property Data to Protect FPGA Designs

    No full text
    International audienceOver the past 10 years, the designers of intellectual properties(IP) have faced increasing threats including cloning, counterfeiting, andreverse-engineering. This is now a critical issue for the microelectronicsindustry. The design of a secure, efficient, lightweight protection scheme fordesign data is a serious challenge for the hardware security community. In thiscontext, this chapter presents two ultra-lightweight transmitters using sidechannel leakage based on electromagnetic emanation to send embedded IPidentity discreetly and quickl
    corecore