170,854 research outputs found

    Towards Secure and Safe Appified Automated Vehicles

    Full text link
    The advancement in Autonomous Vehicles (AVs) has created an enormous market for the development of self-driving functionalities,raising the question of how it will transform the traditional vehicle development process. One adventurous proposal is to open the AV platform to third-party developers, so that AV functionalities can be developed in a crowd-sourcing way, which could provide tangible benefits to both automakers and end users. Some pioneering companies in the automotive industry have made the move to open the platform so that developers are allowed to test their code on the road. Such openness, however, brings serious security and safety issues by allowing untrusted code to run on the vehicle. In this paper, we introduce the concept of an Appified AV platform that opens the development framework to third-party developers. To further address the safety challenges, we propose an enhanced appified AV design schema called AVGuard, which focuses primarily on mitigating the threats brought about by untrusted code, leveraging theory in the vehicle evaluation field, and conducting program analysis techniques in the cybersecurity area. Our study provides guidelines and suggested practice for the future design of open AV platforms

    Automatic allocation of safety requirements to components of a software product line

    Get PDF
    Safety critical systems developed as part of a product line must still comply with safety standards. Standards use the concept of Safety Integrity Levels (SILs) to drive the assignment of system safety requirements to components of a system under design. However, for a Software Product Line (SPL), the safety requirements that need to be allocated to a component may vary in different products. Variation in design can indeed change the possible hazards incurred in each product, their causes, and can alter the safety requirements placed on individual components in different SPL products. Establishing common SILs for components of a large scale SPL by considering all possible usage scenarios, is desirable for economies of scale, but it also poses challenges to the safety engineering process. In this paper, we propose a method for automatic allocation of SILs to components of a product line. The approach is applied to a Hybrid Braking System SPL design

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Grand Challenges of Traceability: The Next Ten Years

    Full text link
    In 2007, the software and systems traceability community met at the first Natural Bridge symposium on the Grand Challenges of Traceability to establish and address research goals for achieving effective, trustworthy, and ubiquitous traceability. Ten years later, in 2017, the community came together to evaluate a decade of progress towards achieving these goals. These proceedings document some of that progress. They include a series of short position papers, representing current work in the community organized across four process axes of traceability practice. The sessions covered topics from Trace Strategizing, Trace Link Creation and Evolution, Trace Link Usage, real-world applications of Traceability, and Traceability Datasets and benchmarks. Two breakout groups focused on the importance of creating and sharing traceability datasets within the research community, and discussed challenges related to the adoption of tracing techniques in industrial practice. Members of the research community are engaged in many active, ongoing, and impactful research projects. Our hope is that ten years from now we will be able to look back at a productive decade of research and claim that we have achieved the overarching Grand Challenge of Traceability, which seeks for traceability to be always present, built into the engineering process, and for it to have "effectively disappeared without a trace". We hope that others will see the potential that traceability has for empowering software and systems engineers to develop higher-quality products at increasing levels of complexity and scale, and that they will join the active community of Software and Systems traceability researchers as we move forward into the next decade of research

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Software reliability and dependability: a roadmap

    Get PDF
    Shifting the focus from software reliability to user-centred measures of dependability in complete software-based systems. Influencing design practice to facilitate dependability assessment. Propagating awareness of dependability issues and the use of existing, useful methods. Injecting some rigour in the use of process-related evidence for dependability assessment. Better understanding issues of diversity and variation as drivers of dependability. Bev Littlewood is founder-Director of the Centre for Software Reliability, and Professor of Software Engineering at City University, London. Prof Littlewood has worked for many years on problems associated with the modelling and evaluation of the dependability of software-based systems; he has published many papers in international journals and conference proceedings and has edited several books. Much of this work has been carried out in collaborative projects, including the successful EC-funded projects SHIP, PDCS, PDCS2, DeVa. He has been employed as a consultant t
    corecore