11,019 research outputs found

    From Query-By-Keyword to Query-By-Example: LinkedIn Talent Search Approach

    Full text link
    One key challenge in talent search is to translate complex criteria of a hiring position into a search query, while it is relatively easy for a searcher to list examples of suitable candidates for a given position. To improve search efficiency, we propose the next generation of talent search at LinkedIn, also referred to as Search By Ideal Candidates. In this system, a searcher provides one or several ideal candidates as the input to hire for a given position. The system then generates a query based on the ideal candidates and uses it to retrieve and rank results. Shifting from the traditional Query-By-Keyword to this new Query-By-Example system poses a number of challenges: How to generate a query that best describes the candidates? When moving to a completely different paradigm, how does one leverage previous product logs to learn ranking models and/or evaluate the new system with no existing usage logs? Finally, given the different nature between the two search paradigms, the ranking features typically used for Query-By-Keyword systems might not be optimal for Query-By-Example. This paper describes our approach to solving these challenges. We present experimental results confirming the effectiveness of the proposed solution, particularly on query building and search ranking tasks. As of writing this paper, the new system has been available to all LinkedIn members

    WISER: A Semantic Approach for Expert Finding in Academia based on Entity Linking

    Full text link
    We present WISER, a new semantic search engine for expert finding in academia. Our system is unsupervised and it jointly combines classical language modeling techniques, based on text evidences, with the Wikipedia Knowledge Graph, via entity linking. WISER indexes each academic author through a novel profiling technique which models her expertise with a small, labeled and weighted graph drawn from Wikipedia. Nodes in this graph are the Wikipedia entities mentioned in the author's publications, whereas the weighted edges express the semantic relatedness among these entities computed via textual and graph-based relatedness functions. Every node is also labeled with a relevance score which models the pertinence of the corresponding entity to author's expertise, and is computed by means of a proper random-walk calculation over that graph; and with a latent vector representation which is learned via entity and other kinds of structural embeddings derived from Wikipedia. At query time, experts are retrieved by combining classic document-centric approaches, which exploit the occurrences of query terms in the author's documents, with a novel set of profile-centric scoring strategies, which compute the semantic relatedness between the author's expertise and the query topic via the above graph-based profiles. The effectiveness of our system is established over a large-scale experimental test on a standard dataset for this task. We show that WISER achieves better performance than all the other competitors, thus proving the effectiveness of modelling author's profile via our "semantic" graph of entities. Finally, we comment on the use of WISER for indexing and profiling the whole research community within the University of Pisa, and its application to technology transfer in our University
    • …
    corecore