51,086 research outputs found

    Optimal coverage multi-path scheduling scheme with multiple mobile sinks for WSNs

    Get PDF
    Wireless Sensor Networks (WSNs) are usually formed with many tiny sensors which are randomly deployed within sensing field for target monitoring. These sensors can transmit their monitored data to the sink in a multi-hop communication manner. However, the ‘hot spots’ problem will be caused since nodes near sink will consume more energy during forwarding. Recently, mobile sink based technology provides an alternative solution for the long-distance communication and sensor nodes only need to use single hop communication to the mobile sink during data transmission. Even though it is difficult to consider many network metrics such as sensor position, residual energy and coverage rate etc., it is still very important to schedule a reasonable moving trajectory for the mobile sink. In this paper, a novel trajectory scheduling method based on coverage rate for multiple mobile sinks (TSCR-M) is presented especially for large-scale WSNs. An improved particle swarm optimization (PSO) combined with mutation operator is introduced to search the parking positions with optimal coverage rate. Then the genetic algorithm (GA) is adopted to schedule the moving trajectory for multiple mobile sinks. Extensive simulations are performed to validate the performance of our proposed method

    Search-based 3D Planning and Trajectory Optimization for Safe Micro Aerial Vehicle Flight Under Sensor Visibility Constraints

    Full text link
    Safe navigation of Micro Aerial Vehicles (MAVs) requires not only obstacle-free flight paths according to a static environment map, but also the perception of and reaction to previously unknown and dynamic objects. This implies that the onboard sensors cover the current flight direction. Due to the limited payload of MAVs, full sensor coverage of the environment has to be traded off with flight time. Thus, often only a part of the environment is covered. We present a combined allocentric complete planning and trajectory optimization approach taking these sensor visibility constraints into account. The optimized trajectories yield flight paths within the apex angle of a Velodyne Puck Lite 3D laser scanner enabling low-level collision avoidance to perceive obstacles in the flight direction. Furthermore, the optimized trajectories take the flight dynamics into account and contain the velocities and accelerations along the path. We evaluate our approach with a DJI Matrice 600 MAV and in simulation employing hardware-in-the-loop.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 201

    Roving vehicle motion control Final report

    Get PDF
    Roving vehicle motion control for unmanned planetary and lunar exploratio

    Connectivity-guaranteed and obstacle-adaptive deployment schemes for mobile sensor networks

    Get PDF
    Mobile sensors can relocate and self-deploy into a network. While focusing on the problems of coverage, existing deployment schemes largely over-simplify the conditions for network connectivity: they either assume that the communication range is large enough for sensors in geometric neighborhoods to obtain location information through local communication, or they assume a dense network that remains connected. In addition, an obstacle-free field or full knowledge of the field layout is often assumed. We present new schemes that are not governed by these assumptions, and thus adapt to a wider range of application scenarios. The schemes are designed to maximize sensing coverage and also guarantee connectivity for a network with arbitrary sensor communication/sensing ranges or node densities, at the cost of a small moving distance. The schemes do not need any knowledge of the field layout, which can be irregular and have obstacles/holes of arbitrary shape. Our first scheme is an enhanced form of the traditional virtual-force-based method, which we term the Connectivity-Preserved Virtual Force (CPVF) scheme. We show that the localized communication, which is the very reason for its simplicity, results in poor coverage in certain cases. We then describe a Floor-based scheme which overcomes the difficulties of CPVF and, as a result, significantly outperforms it and other state-of-the-art approaches. Throughout the paper our conclusions are corroborated by the results from extensive simulations

    Coverage and mobile sensor placement for vehicles on predetermined routes: a greedy heuristic approach

    Get PDF
    Road potholes are not only nuisance but can also damage vehicles and pose serious safety risks for drivers. Recently, a number of approaches have been developed for automatic pothole detection using equipment such as accelerometers, image sensors or LIDARs. Mounted on vehicles, such as taxis or buses, the sensors can automatically detect potholes as the vehicles carry out their normal operation. While prior work focused on improving the performance of a standalone device, it simply assumed that the sensors would be installed on the entire fleet of vehicles. When the number of sensors is limited it is important to select an optimal set of vehicles to make sure that they do not cover similar routes in order to maximize the total coverage of roads inspected by sensors. The paper investigates this problem for vehicles that follow pre-determined routes, formulates it as a linear optimization problem and proposes a solution based on a greedy heuristic. The proposed approach has been tested on an official London bus route dataset containing 713 routes and showed up to 78% improvement compared to a random sensor placement selected as a baseline algorithm

    Neural Network Memory Architectures for Autonomous Robot Navigation

    Full text link
    This paper highlights the significance of including memory structures in neural networks when the latter are used to learn perception-action loops for autonomous robot navigation. Traditional navigation approaches rely on global maps of the environment to overcome cul-de-sacs and plan feasible motions. Yet, maintaining an accurate global map may be challenging in real-world settings. A possible way to mitigate this limitation is to use learning techniques that forgo hand-engineered map representations and infer appropriate control responses directly from sensed information. An important but unexplored aspect of such approaches is the effect of memory on their performance. This work is a first thorough study of memory structures for deep-neural-network-based robot navigation, and offers novel tools to train such networks from supervision and quantify their ability to generalize to unseen scenarios. We analyze the separation and generalization abilities of feedforward, long short-term memory, and differentiable neural computer networks. We introduce a new method to evaluate the generalization ability by estimating the VC-dimension of networks with a final linear readout layer. We validate that the VC estimates are good predictors of actual test performance. The reported method can be applied to deep learning problems beyond robotics
    • 

    corecore