162 research outputs found

    An efficient ultra-wideband digital transceiver for wireless applications on the field-programmable gate array platform

    Get PDF
    The ultra-wideband (UWB) technology is a promising short-range communication technology for most wireless applications. The UWB works at higher frequencies and is affected by interferences with the same frequency standards. This manuscript has designed an efficient and low-cost implementation of IEEE 802.15.4a-based UWB-digital transceiver (DTR). The design module contains UWB transmitter (TX), channel, and UWB-receiver (RX) units. Convolutional encoding and modulation units like burst position modulation and binary phase-shift keying modulation are used to construct the UWB-TX. The synchronization and Viterbi decoder units are used to recover the original data bits and are affected by noise in UWB-RX. The UWB-DTR is synthesized using Xilinx ISE¼ environment with Verilog hardware description language (HDL) and implemented on Artix-7 field-programmable gate array (FPGA). The UWB-DTR utilizes less than 2% (slices and look-up table/LUTs), operates at 268 MHz, and consumes 91 mW of total power on FPGA. The transceiver achieves a 6.86 Mbps data rate, which meets the IEEE 802.15.4a standard. The UWB-DTR module obtains the bit error rate (BER) of 2×10-4 by transmitting 105 data bits. The UWB-DTR module is compared with similar physical layer (PHY) transceivers with improvements in chip area (slices), power, data rate, and BER. 

    On the feasibility of Bluetooth, Zigbee and IEEE 802.15.4 technologies on board high speed trains

    Get PDF
    This paper studies the feasibility of using low-power wireless technologies such as Bluetooth, IEEE 802.15.4 and ZigBee in high-speed railway scenarios that involve bidirectional land-to-train communication. The presented results have been obtained through experimental tests conducted at the high-speed railway line connecting Madrid to Barcelona. A multiplatform communication system has been installed in a high-speed train, circulating at velocities up to 300 km/h, whereas autonomous devices have been disseminated along of the railway path to communicate with the onboard devices. The conclusions drawn from this work will be used as guidelines for the future implementation of autonomous communication platforms for high-speed rail connectivity.Postprint (author’s final draft

    Ultra Low Power Communication Protocols for UWB Impulse Radio Wireless Sensor Networks

    Get PDF
    This thesis evaluates the potential of Ultra Wideband Impulse Radio for wireless sensor network applications. Wireless sensor networks are collections of small electronic devices composed of one or more sensors to acquire information on their environment, an energy source (typically a battery), a microcontroller to control the measurements, process the information and communicate with its peers, and a radio transceiver to enable these communications. They are used to regularly collect information within their deployment area, often for very long periods of time (up to several years). The large number of devices often considered, as well as the long deployment durations, makes any manual intervention complex and costly. Therefore, these networks must self-configure, and automatically adapt to changes in their electromagnetic environment (channel variations, interferers) and network topology modifications: some nodes may run out of energy, or suffer from a hardware failure. Ultra Wideband Impulse Radio is a novel wireless technology that, thanks to its extremely large bandwidth, is more robust to frequency dependent propagation effects. Its impulsional nature makes it robust to multipath fading, as the short duration of the pulses leads most multipath components to arrive isolated. This technology should also enable high precision ranging through time of flight measurements, and operate at ultra low power levels. The main challenge is to design a system that reaches the same or higher degree of energy savings as existing narrowband systems considering all the protocol layers. As these radios are not yet widely available, the first part of this thesis presents Maximum Pulse Amplitude Estimation, a novel approach to symbol-level modeling of UWB-IR systems that enabled us to implement the first network simulator of devices compatible with the UWB physical layer of the IEEE 802.15.4A standard for wireless sensor networks. In the second part of this thesis, WideMac, a novel ultra low power MAC protocol specifically designed for UWB-IR devices is presented. It uses asynchronous duty cycling of the radio transceiver to minimize the power consumption, combined with periodic beacon emissions so that devices can learn each other's wake-up patterns and exchange packets. After an analytical study of the protocol, the network simulation tool presented in the first part of the thesis is used to evaluate the performance of WideMac in a medical body area network application. It is compared to two narrowband and an FM-UWB solutions. The protocol stack parameters are optimized for each solution, and it is observed that WideMac combined to UWB-IR is a credible technology for such applications. Similar simulations, considering this time a static multi-hop network are performed. It is found that WideMac and UWB-IR perform as well as a mature and highly optimized narrowband solution (based on the WiseMAC ULP MAC protocol), despite the lack of clear channel assessment functionality on the UWB radio. The last part of this thesis studies analytically a dual mode MAC protocol named WideMac-High Availability. It combines the Ultra Low PowerWideMac with the higher performance Aloha protocol, so that ultra low power consumption and hence long deployment times can be combined with high performance low latency communications when required by the application. The potential of this scheme is quantified, and it is proposed to adapt it to narrowband radio transceivers by combining WiseMAC and CSMA under the name WiseMAC-HA

    Interference management in impulse-radio ultra-wide band networks

    Get PDF
    We consider networks of impulse-radio ultra-wide band (IR-UWB) devices. We are interested in the architecture, design, and performance evaluation of these networks in a low data-rate, self-organized, and multi-hop setting. IR-UWB is a potential physical layer for sensor networks and emerging pervasive wireless networks. These networks are likely to have no particular infrastructure, might have nodes embedded in everyday life objects and have a size ranging from a few dozen nodes to large-scale networks composed of hundreds of nodes. Their average data-rate is low, on the order of a few megabits per second. IR-UWB physical layers are attractive for these networks because they potentially combine low-power consumption, robustness to multipath fading and to interference, and location/ranging capability. The features of an IR-UWB physical layer greatly differ from the features of the narrow-band physical layers used in existing wireless networks. First, the bandwidth of an IR-UWB physical layer is at least 500 MHz, which is easily two orders of magnitude larger than the bandwidth used by a typical narrow-band physical layer. Second, this large bandwidth implies stringent radio spectrum regulations because UWB systems might occupy a portion of the spectrum that is already in use. Consequently, UWB systems exhibit extremely low power spectral densities. Finally IR-UWB physical layers offer multi-channel capabilities for multiple and concurrent access to the physical layer. Hence, the architecture and design of IR-UWB networks are likely to differ significantly from narrow-band wireless networks. For the network to operate efficiently, it must be designed and implemented to take into account the features of IR-UWB and to take advantage of them. In this thesis, we focus on both the medium access control (MAC) layer and the physical layer. Our main objectives are to understand and determine (1) the architecture and design principles of IR-UWB networks, and (2) how to implement them in practical schemes. In the first part of this thesis, we explore the design space of IR-UWB networks and analyze the fundamental design choices. We show that interference from concurrent transmissions should not be prevented as in protocols that use mutual exclusion (for instance, IEEE 802.11). Instead, interference must be managed with rate adaptation, and an interference mitigation scheme should be used at the physical layer. Power control is useless. Based on these findings, we develop a practical PHY-aware MAC protocol that takes into account the specific nature of IR-UWB and that is able to adapt its rate to interference. We evaluate the performance obtained with this design: It clearly outperforms traditional designs that, instead, use mutual exclusion or power control. One crucial aspect of IR-UWB networks is packet detection and timing acquisition. In this context, a network design choice is whether to use a common or private acquisition preamble for timing acquisition. Therefore, we evaluate how this network design issue affects the network throughput. Our analysis shows that a private acquisition preamble yields a tremendous increase in throughput, compared with a common acquisition preamble. In addition, simulations on multi-hop topologies with TCP flows demonstrate that a network using private acquisition preambles has a stable throughput. On the contrary, using a common acquisition preamble exhibits an effect similar to exposed terminal issues in 802.11 networks: the throughput is severely degraded and flow starvation might occur. In the second part of this thesis, we are interested in IEEE 802.15.4a, a standard for low data-rate, low complexity networks that employs an IR-UWB physical layer. Due to its low complexity, energy detection is appealing for the implementation of practical receivers. But it is less robust to multi-user interference (MUI) than a coherent receiver. Hence, we evaluate the performance of an IEEE 802.15.4a physical layer with an energy detection receiver to find out whether a satisfactory performance is still obtained. Our results show that MUI severely degrades the performance in this case. The energy detection receiver significantly diminishes one of the most appealing benefits of UWB, specifically its robustness to MUI and thus the possibility of allowing for parallel transmissions. This performance analysis leads to the development of an IR-UWB receiver architecture, based on energy detection, that is robust to MUI and adapted to the peculiarities of IEEE 802.15.4a. This architecture greatly improves the performance and entails only a moderate increase in complexity. Finally, we present the architecture of an IR-UWB physical layer implementation in ns-2, a well-known network simulator. This architecture is generic and allows for the simulation of several multiple-access physical layers. In addition, it comprises a model of packet detection and timing acquisition. Network simulators also need to have efficient algorithms to accurately compute bit or packet error rates. Hence, we present a fast algorithm to compute the bit error rate of an IR-UWB physical layer in a network setting with MUI. It is based on a novel combination of large deviation theory and importance sampling

    Analysis of the IEEE 802.15.4a ultra wideband physical layer through wireless sensor network simulations in OMNET++

    Get PDF
    Wireless Sensor Networks are the main representative of pervasive computing in large-scale physical environments. These networks consist of a large number of small, wireless devices embedded in the physical world to be used for surveillance, environmental monitoring or other data capture, processing and transfer applications. Ultra wideband has emerged as one of the newest and most promising concepts for wireless technology. Considering all its advantages it seems a likely communication technology candidate for future wireless sensor networks. This paper considers the viability of ultra wideband technology in wireless sensor networks by employing an IEEE 802.15.4a low-rate ultra wideband physical layer model in the OMNET++ simulation environment. An elaborate investigation into the inner workings of the IEEE 802.15.4a UWB physical layer is performed. Simulation experiments are used to provide a detailed analysis of the performance of the IEEE 802.15.4a UWB physical layer over several communication distances. A proposal for a cognitive, adaptive communication approach to optimize for speed and distance is also presented. AFRIKAANS : Draadlose Sensor Netwerke is die hoof verteenwoordiger vir deurdringende rekenarisering in groot skaal fisiese omgewings. Hierdie tipe netwerke bestaan uit ’n groot aantal klein, draadlose apparate wat in die fisiese wĂȘreld ingesluit word vir die doel van bewaking, omgewings monitering en vele ander data opvang, verwerk en oordrag applikasies. Ultra wyeband het opgestaan as een van die nuutste en mees belowend konsepte vir draadlose kommunikasie tegnologie. As al die voordele van diĂ© kommunikasie tegnologie in ag geneem word, blyk dit om ’n baie goeie kandidaat te wees vir gebruik in toekomstige draadlose sensor netwerke. Hierdie verhandeling oorweeg die vatbaarheid van die gebruik van die ultra wyeband tegnologie in draadlose sensor netwerke deur ’n IEEE 802.15.4a lae-tempo ultra wyeband fisiese laag model in die OMNET++ simulasie omgewing toe te pas. ’n Breedvoerige ondersoek word geloots om die fyn binneste werking van die IEEE 802.15.4a UWB fisiese laag te verstaan. Simulasie eksperimente word gebruik om ’n meer gedetaileerde analiese omtrent die werkverrigting van die IEEE 802.15.4a UWB fisiese laag te verkry oor verskillende kommunikasie afstande. ’n Voorstel vir ’n omgewings bewuste, aanpasbare kommunikasie tegniek word bespreek met die doel om die spoed en afstand van kommunikasie te optimiseer.Dissertation (MEng)--University of Pretoria, 2011.Electrical, Electronic and Computer Engineeringunrestricte

    Ultra wideband: applications, technology and future perspectives

    Get PDF
    Ultra Wide Band (UWB) wireless communications offers a radically different approach to wireless communication compared to conventional narrow band systems. Global interest in the technology is huge. This paper reports on the state of the art of UWB wireless technology and highlights key application areas, technological challenges, higher layer protocol issues, spectrum operating zones and future drivers. The majority of the discussion focuses on the state of the art of UWB technology as it is today and in the near future

    An Overview on Wireless Sensor Networks Technology and Evolution

    Get PDF
    Wireless sensor networks (WSNs) enable new applications and require non-conventional paradigms for protocol design due to several constraints. Owing to the requirement for low device complexity together with low energy consumption (i.e., long network lifetime), a proper balance between communication and signal/data processing capabilities must be found. This motivates a huge effort in research activities, standardization process, and industrial investments on this field since the last decade. This survey paper aims at reporting an overview of WSNs technologies, main applications and standards, features in WSNs design, and evolutions. In particular, some peculiar applications, such as those based on environmental monitoring, are discussed and design strategies highlighted; a case study based on a real implementation is also reported. Trends and possible evolutions are traced. Emphasis is given to the IEEE 802.15.4 technology, which enables many applications of WSNs. Some example of performance characteristics of 802.15.4-based networks are shown and discussed as a function of the size of the WSN and the data type to be exchanged among nodes

    Concurrent and Parallel Transmissions are Optimal for Low Data-Rate IR- UWB Networks

    Get PDF
    The Internet of Things, emerging pervasive and sensor networks are low data-rate wireless networks with, a priori, no specific topology and no fixed infrastructure. Their primary requirements are twofold: First, low power consumption and, due to environmental concerns, low emitted power. Second, robustness to poor propagation environments and multi-user interference. Impulse-radio ultra-wide band (IR-UWB) physical layers have the potential to satisfy these requirements. Because the features of IR-UWB physical layers differ from narrow-band physical layers, the design rules of IR-UWB networks are likely to be different than for narrow-band wireless networks. Indeed, to optimally use the resources available, it is crucial for the network layers to take into account and take advantage of the underlying physical layer. Therefore, we are interested in the design of IR-UWB networks in a low data-rate, self-organized, and multi-hop context. We concentrate on the medium access control (MAC) layer and the physical layer. In the case of low data-rate IR-UWB networks, the optimal design is to allow for parallel and concurrent transmissions at the MAC layer. Interference is managed with rate adaptation, no power control and an interference mitigation scheme at the physical layer. A protocol that implements the optimal design and allows for parallel transmissions outperforms protocols that use exclusion or power control

    Wireless Alliance for Testing Experiment and Research (WALTER) Experts Workshop

    Get PDF
    The purpose of the publication is to describe the WALTER experts workshop and related results and findings. The workshop was conducted in Ispra, Varese, Italy from the 2nd to the 3rd of July 2008 at the European Commission JRC facilities. The workshop was organized as part of the FP7 WALTER project, which has the objective of define a networked test bed laboratory to evaluate UltraWideBand (UWB) technology and equipment. The purpose of WALTER workshop was to present and discuss the current regulatory, standardization and research status of UltraWideBand (UWB) technology with special focus on the definition of requirements, methodologies and tools for UWB measurements and testing. The WALTER workshop had the following main objectives: - Identify the main regulatory and standardization challenges for the adoption of UWB in Europe and the world. Support the identification and resolution of conflicting requirements. - Identify the main challenges in the UWB testing and measurements. Describe how the current industrial and research activity could support the resolution of these challenges. - Discuss the future developments like UWB at 60 GHz and innovative interference and mitigation techniques including Detect And Avoid (DAA). A number of international experts in the UltraWideBand field have been invited to participate to this workshop, to encourage bi-directional communication: in one direction to disseminate the information on WALTER project and its activities, in the other direction to collect the input and feedback on the regulatory and standardization work, industrial activity and research studies.JRC.G.6-Sensors, radar technologies and cybersecurit
    • 

    corecore