1,738 research outputs found

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Passive BCI in operational environments: insights, recent advances and future trends

    Get PDF
    this mini-review aims to highlight recent important aspects to consider and evaluate when passive Brain-Computer Interface (pBCI) systems would be developed and used in operational environments, and remarks future directions of their applications

    User-Centred BCI Videogame Design

    Get PDF
    International audienceThis chapter aims to offer a user-centred methodological framework to guide the design and evaluation of Brain-Computer Interface videogames. This framework is based on the contributions of ergonomics to ensure these games are well suited for their users (i.e., players). It provides methods, criteria and metrics to complete the different phases required by ae human-centred design process. This aims to understand the context of use, specify the user needs and evaluate the solutions in order to define design choices. Several ergonomic methods (e.g., interviews, longitudinal studies, user based testing), objective metrics (e.g., task success, number of errors) and subjective metrics (e.g., mark assigned to an item) are suggested to define and measure the usefulness, usability, acceptability, hedonic qualities, appealingness, emotions related to user experience, immersion and presence to be respected. The benefits and contributions of the user centred framework for the ergonomic design of these Brain-Computer Interface Videogames are discussed

    Neurolaw: Brain-Computer Interfaces

    Get PDF

    How Visual Stimuli Evoked P300 is Transforming the Brain–Computer Interface Landscape: A PRISMA Compliant Systematic Review

    Get PDF
    Non-invasive Visual Stimuli evoked-EEGbased P300 BCIs have gained immense attention in recent years due to their ability to help patients with disability using BCI-controlled assistive devices and applications. In addition to the medical field, P300 BCI has applications in entertainment, robotics, and education. The current article systematically reviews 147 articles that were published between 2006-2021*. Articles that pass the pre-defined criteria are included in the study. Further, classification based on their primary focus, including article orientation, participants’ age groups, tasks given, databases, the EEG devices used in the studies, classification models, and application domain, is performed. The application-based classification considers a vast horizon, including medical assessment, assistance, diagnosis, applications, robotics, entertainment, etc. The analysis highlights an increasing potential for P300 detection using visual stimuli as a prominent and legitimate research area and demonstrates a significant growth in the research interest in the field of BCI spellers utilizing P300. This expansion was largely driven by the spread of wireless EEG devices, advances in computational intelligence methods, machine learning, neural networks and deep learning

    Effects of P300-based BCI use on reported presence in a virtual environment

    Get PDF
    Brain-computer interfaces (BCIs) are becoming more and more popular as an input device for virtual worlds and computer games. Depending on their function, a major drawback is the mental workload associated with their use and there is significant effort and training required to effectively control them. In this paper, we present two studies assessing how mental workload of a P300-based BCI affects participants" reported sense of presence in a virtual environment (VE). In the first study, we employ a BCI exploiting the P300 event-related potential (ERP) that allows control of over 200 items in a virtual apartment. In the second study, the BCI is replaced by a gaze-based selection method coupled with wand navigation. In both studies, overall performance is measured and individual presence scores are assessed by means of a short questionnaire. The results suggest that there is no immediate benefit for visualizing events in the VE triggered by the BCI and that no learning about the layout of the virtual space takes place. In order to alleviate this, we propose that future P300-based BCIs in VR are set up so as require users to make some inference about the virtual space so that they become aware of it,which is likely to lead to higher reported presence

    BRAIN COMPUTER INTERFACE (BCI) ON ATTENTION: A SCOPING REVIEW

    Get PDF
    Technological innovations are now an integral part of healthcare. Brain-computer interface (BCI) is a novel technological intervention system that is useful in restoring function to people disabled by neurological disorders such as attention deficit hyperactivity disorder (ADHD), amyotrophic lateral sclerosis (ALS), cerebral palsy, stroke, or spinal cord injury. This paper surveys the literature concerning the effectiveness of BCI on attention in subjects under various conditions. The findings of this scoping review are that studies have been made on ADHD, ALS, ASD subjects, and subjects recovering from brain and spinal cord injuries. BCI based neurofeedback training is seen to be effective in improving attention in these subjects. Some studies have also been made on healthy subjects.BCI based neurofeedback training promises neurocognitive improvement and EEG changes in the elderly. Different cognitive assessments have been tried on healthy adults.   From this review, it is evident that hardly any research has been done on using BCI for enhancing attention in post-stroke subjects. So there arises the necessity for making a study on the effects of BCI based attention training in post-stroke subjects, as attention is the key for learning motor skills that get impaired following a stroke. Currently, many researches are underway to determine the effects of a BCI based training program for the enhancement of attention in post-stroke subjects
    corecore