30 research outputs found

    Analysis and Design of Authentication and Encryption Algorithms for Secure Cloud Systems

    Get PDF
    Along with the fast growth of networks and mobile devices, cloud computing has become one of the most attractive and effective technologies and business solutions nowadays. Increasing numbers of organizations and customers are migrating their businesses and data to the cloud due to the flexibility and cost-efficiency of cloud systems. Preventing unauthorized access of sensitive data in the cloud has been one of the biggest challenges when designing a secure cloud system, and it strongly relies on the chosen authentication and encryption algorithms for providing authenticity and confidentiality, respectively. This thesis investigates various aspects of authentication and encryption algorithms for securing cloud systems, including authenticated encryption modes of operation, block ciphers, password hashing algorithms, and password-less/two-factor authentication mechanisms. Improving Authenticated Encryption Modes. The Galois/Counter Mode (GCM) is an authenticated encryption mode of operation for block ciphers. It has been widely adopted by many network standards and protocols that protect the security of cloud communications, such as TLS v1.2, IEEE 802.1AE and IPsec. Iwata et al. recently found a flaw in GCM's original proofs for non-96-bit nonce cases, and then presented new security bounds for GCM. The new bounds imply that the success probabilities of adversaries for attacking GCM are much larger than the originally expected ones. We propose a simple change to repair GCM. When applied, it will improve the security bounds by a factor of about 2202^{20} while maintaining most of the original proofs. Analyzing Polynomial-Based Message Authentication Codes. We investigate attacks on polynomial-based message authentication code (MAC) schemes including the one adopted in GCM. We demonstrate that constructing successful forgeries of these MAC schemes does not necessarily require hash collisions. This discovery removes certain restrictions in the attacks previously proposed by Procter and Cid. Moreover, utilizing a special design of GCM for processing non-96-bit nonces, we turn these forgery attacks into birthday attacks, which will significantly increase their success probabilities. Therefore, by considering the birthday attacks and the security proof flaw found by Iwata et al., cloud system designers should avoid using GCM with non-96-bit nonces if they do not revise the design of GCM. Analyzing Block Ciphers. We propose a new framework for analyzing symmetric-key ciphers by guessing intermediate states to divide ciphers into small components. This framework is suitable for lightweight ciphers with simple key schedules and block sizes smaller than key lengths. Using this framework, we design new attacks on the block cipher family KATAN. These attacks can recover the master keys of 175-round KATAN32, 130-round KATAN48 and 112-round KATAN64 faster than exhaustive search, and thus reach many more rounds than the existing attacks. We also provide new attacks on 115-round KATAN32 and 100-round KATAN48 in order to demonstrate that this new kind of attack can be more time-efficient and memory-efficient than the existing ones. Designing Password Hashing Algorithms. Securely storing passwords and deriving cryptographic keys from passwords are also crucial for most secure cloud system designs. However, choices of well-studied password hashing algorithms are extremely limited, as their security requirements and design principles are different from common cryptographic primitives. We propose two practical password hashing algorithms, Pleco and Plectron. They are built upon well-understood cryptographic algorithms, and combine the advantages of symmetric-key and asymmetric-key primitives. By employing the Rabin cryptosystem, we prove that the one-wayness of Pleco is at least as strong as the hard problem of integer factorization. In addition, both password hashing algorithms are designed to be sequential memory-hard, in order to thwart large-scale password searching using parallel hardware, such as GPUs, FPGAs, and ASICs. Designing Password-less/Two-Factor Authentication Mechanisms. Motivated by a number of recent industry initiatives, we propose Loxin, an innovative solution for password-less authentication for cloud systems and web applications. Loxin aims to improve on passwords with respect to both usability and security. It utilizes push message services for mobile devices to initiate authentication transactions based on asymmetric-key cryptography, and enables users to access multiple services by using pre-owned identities, such as email addresses. In particular, the Loxin server cannot generate users' authentication credentials, thereby eliminating the potential risk of credential leakage if the Loxin server gets compromised. Furthermore, Loxin is fully compatible with existing password-based authentication systems, and thus can serve as a two-factor authentication mechanism

    Electromagnetic Side-Channel Resilience against Lightweight Cryptography

    Get PDF
    Side-channel attacks are an unpredictable risk factor in cryptography. Therefore, observations of leakages through physical parameters, i.e., power and electromagnetic (EM) radiation, etc., of digital devices are essential to minimise vulnerabilities associated with cryptographic functions. Compared to costs in the past, performing side-channel attacks using inexpensive test equipment is becoming a reality. Internet-of-Things (IoT) devices are resource-constrained, and lightweight cryptography is a novel approach in progress towards IoT security. Thus, it would provide sufficient data and privacy protection in such a constrained ecosystem. Therefore, cryptanalysis of physical leakages regarding these emerging ciphers is crucial. EM side-channel attacks seem to cause a significant impact on digital forensics nowadays. Within existing literature, power analysis seems to have considerable attention in research whereas other phenomena, such as EM, should continue to be appropriately evaluated in playing a role in forensic analysis.The emphasis of this thesis is on lightweight cryptanalysis. The preliminary investigations showed no Correlation EManalysis (CEMA) of PRESENT lightweight algorithm. The PRESENT is a block cipher that promises to be adequate for IoT devices, and is expected to be used commercially in the future. In an effort to fill in this research gap, this work examines the capabilities of a correlation EM side-channel attack against the PRESENT. For that, Substitution box (S-box) of the PRESENT was targeted for its 1st round with the use of a minimum number of EM waveforms compared to other work in literature, which was 256. The attack indicates the possibility of retrieving 8 bytes of the secret key out of 10 bytes. The experimental process started from a Simple EMA (SEMA) and gradually enhanced up to a CEMA. The thesis presents the methodology of the attack modelling and the observations followed by a critical analysis. Also, a technical review of the IoT technology and a comprehensive literature review on lightweight cryptology are included

    Flexi-WVSNP-DASH: A Wireless Video Sensor Network Platform for the Internet of Things

    Get PDF
    abstract: Video capture, storage, and distribution in wireless video sensor networks (WVSNs) critically depends on the resources of the nodes forming the sensor networks. In the era of big data, Internet of Things (IoT), and distributed demand and solutions, there is a need for multi-dimensional data to be part of the Sensor Network data that is easily accessible and consumable by humanity as well as machinery. Images and video are expected to become as ubiquitous as is the scalar data in traditional sensor networks. The inception of video-streaming over the Internet, heralded a relentless research for effective ways of distributing video in a scalable and cost effective way. There has been novel implementation attempts across several network layers. Due to the inherent complications of backward compatibility and need for standardization across network layers, there has been a refocused attention to address most of the video distribution over the application layer. As a result, a few video streaming solutions over the Hypertext Transfer Protocol (HTTP) have been proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These frameworks, do not address the typical and future WVSN use cases. A highly flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH) are introduced. The platform's goal is to usher video as a data element that can be integrated into traditional and non-Internet networks. A low cost, scalable node is built from the ground up to be fully compatible with the Internet of Things Machine to Machine (M2M) concept, as well as the ability to be easily re-targeted to new applications in a short time. Flexi-WVSNP design includes a multi-radio node, a middle-ware for sensor operation and communication, a cross platform client facing data retriever/player framework, scalable security as well as a cohesive but decoupled hardware and software design.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Towards a Privacy-enhanced Social Networking Site

    Full text link
    L’avénement des réseaux sociaux, tel que Facebook, MySpace et LinkedIn, a fourni une plateforme permettant aux individus de rester facilement connectés avec leurs amis, leurs familles ou encore leurs collègues tout en les encourageant activement à partager leurs données personnelles à travers le réseau. Avec la richesse des activités disponibles sur un réseau social, la quantité et la variété des informations personnelles partagées sont considérables. De plus, de part leur nature numérique, ces informations peuvent être facilement copiées, modifiées ou divulguées sans le consentement explicite de leur propriétaire. Ainsi, l’information personnelle révélée par les réseaux sociaux peut affecter de manière concrète la vie de leurs utilisateurs avec des risques pour leur vie privée allant d’un simple embarras à la ruine complète de leur réputation, en passant par l’usurpation d’identité. Malheureusement, la plupart des utilisateurs ne sont pas conscients de ces risques et les outils mis en place par les réseaux sociaux actuels ne sont pas suffisants pour protéger efficacement la vie privée de leurs utilisateurs. En outre, même si un utilisateur peut contrôler l’accès à son propre profil, il ne peut pas contrôler ce que les autres révèlent à son sujet. En effet, les “amis” d’un utilisateur sur un réseau social peuvent parfois révéler plus d’information à son propos que celui-ci ne le souhaiterait. Le respect de la vie privée est un droit fondamental pour chaque individu. Nous pré- sentons dans cette thèse une approche qui vise à accroître la prise de conscience des utilisateurs des risques par rapport à leur vie privée et à maintenir la souveraineté sur leurs données lorsqu’ils utilisent un réseau social. La première contribution de cette thèse réside dans la classification des risques multiples ainsi que les atteintes à la vie privée des utilisateurs d’un réseau social. Nous introduisons ensuite un cadre formel pour le respect de la vie privée dans les réseaux sociaux ainsi que le concept de politique de vie privée (UPP). Celle-ci définie par l’utilisateur offre une manière simple et flexible de spécifier et communiquer leur attentes en terme de respect de la vie privée à d’autres utilisateurs, tiers parties ainsi qu’au fournisseur du réseau social. Par ailleurs, nous dé- finissons une taxonomie (possiblement non-exhaustive) des critères qu’un réseau social peut intégrer dans sa conception pour améliorer le respect de la vie privée. En introduisant le concept de réseau social respectueux de la vie privée (PSNS), nous proposons Privacy Watch, un réseau social respectueux de la vie privée qui combine les concepts de provenance et d’imputabilité afin d’aider les utilisateurs à maintenir la souveraineté sur leurs données personnelles. Finalement, nous décrivons et comparons les différentes propositions de réseaux sociaux respectueux de la vie privée qui ont émergé récemment. Nous classifions aussi ces différentes approches au regard des critères de respect de la vie privée introduits dans cette thèse.The rise of Social Networking Sites (SNS), such as Facebook, Myspace, and LinkedIn has provided a platform for individuals to easily stay in touch with friends, family and colleagues and actively encourage their users to share personal information. With the wealth of activities available on SNS, the amount and variety of personal information shared is considerable and diverse. Additionally, due to its digital nature, this information can be easily copied, modified and disclosed without the explicit consent of their owner. Personal information disclosed from SNS could affect users’ life, with privacy risks ranging from simple embarrassment to ruining their reputation, or even identity theft. Unfortunately, many users are not fully aware of the danger of divulging their personal information and the current privacy solutions are not flexible and thorough enough to protect user data. Furthermore, even though users of SNS can control access to their own profile, they cannot control what others may reveal about them. Friends can sometimes be untrustworthy and disclose more information about the user than they should. Considering that privacy is a fundamental right for every individual, in this thesis, we present an approach that increases privacy awareness of the users and maintains the sovereignty of their data when using SNS. The first contribution of this thesis is the classification of multiple types of risks as well as user expectations regarding privacy in SNS. Afterwards, we introduce the Privacy Framework for SNS and the concept of User Privacy Policy (UPP) to offer users an easy and flexible way to specify and communicate their privacy concerns to other users, third parties and SNS provider. Additionally, we define a taxonomy (possibly non-exhaustive) of privacy criteria that can enhance the user privacy if they are integrated within the design of a SNS and introduce the concept of a Privacy-enhanced SNS (PSNS). Furthermore, we present also Privacy Watch, a theoretical proposal of a PSNS platform that combines the concept of provenance and accountability to help SNS users maintain sovereignty over their personal data. Finally, we survey and compare several privacy-enhanced SNS that were recently proposed that try to integrate some privacy features directly into the design of the system. We also classify these different approaches with respect to the privacy criteria developed

    Nation-State Attackers and their Effects on Computer Security

    Full text link
    Nation-state intelligence agencies have long attempted to operate in secret, but recent revelations have drawn the attention of security researchers as well as the general public to their operations. The scale, aggressiveness, and untargeted nature of many of these now public operations were not only alarming, but also baffling as many were thought impossible or at best infeasible at scale. The security community has since made many efforts to protect end-users by identifying, analyzing, and mitigating these now known operations. While much-needed, the security community's response has largely been reactionary to the oracled existence of vulnerabilities and the disclosure of specific operations. Nation-State Attackers, however, are dynamic, forward-thinking, and surprisingly agile adversaries who do not rest on their laurels and are continually advancing their efforts to obtain information. Without the ability to conceptualize their actions, understand their perspective, or account for their presence, the security community's advances will become antiquated and unable to defend against the progress of Nation-State Attackers. In this work, we present and discuss a model of Nation-State Attackers that can be used to represent their attributes, behavior patterns, and world view. We use this representation of Nation-State Attackers to show that real-world threat models do not account for such highly privileged attackers, to identify and support technical explanations of known but ambiguous operations, and to identify and analyze vulnerabilities in current systems that are favorable to Nation-State Attackers.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143907/1/aaspring_1.pd

    Using Large-Scale Empirical Methods to Understand Fragile Cryptographic Ecosystems

    Full text link
    Cryptography is a key component of the security of the Internet. Unfortunately, the process of using cryptography to secure the Internet is fraught with failure. Cryptography is often fragile, as a single mistake can have devastating consequences on security, and this fragility is further complicated by the diverse and distributed nature of the Internet. This dissertation shows how to use empirical methods in the form of Internet-wide scanning to study how cryptography is deployed on the Internet, and shows this methodology can discover vulnerabilities and gain insights into fragile cryptographic ecosystems that are not possible without an empirical approach. I introduce improvements to ZMap, the fast Internet-wide scanner, that allow it to fully utilize a 10 GigE connection, and then use Internet-wide scanning to measure cryptography on the Internet. First, I study how Diffie-Hellman is deployed, and show that implementations are fragile and not resilient to small subgroup attacks. Next, I measure the prevalence of ``export-grade'' cryptography. Although regulations limiting the strength of cryptography that could be exported from the United States were lifted in 1999, Internet-wide scanning shows that support for various forms of export cryptography remains widespread. I show how purposefully weakening TLS to comply with these export regulations led to the FREAK, Logjam, and DROWN vulnerabilities, each of which exploits obsolete export-grade cryptography to attack modern clients. I conclude by discussing how empirical cryptography improved protocol design, and I present further opportunities for empirical research in cryptography.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149809/1/davadria_1.pd
    corecore