146 research outputs found

    Memristors

    Get PDF
    This Edited Volume Memristors - Circuits and Applications of Memristor Devices is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the physical sciences, engineering, and technology research areas. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on physical sciences, engineering, and technology,and open new possible research paths for further novel developments

    A Contribution Towards Intelligent Autonomous Sensors Based on Perovskite Solar Cells and Ta2O5/ZnO Thin Film Transistors

    Get PDF
    Many broad applications in the field of robotics, brain-machine interfaces, cognitive computing, image and speech processing and wearables require edge devices with very constrained power and hardware requirements that are challenging to realize. This is because these applications require sub-conscious awareness and require to be always “on”, especially when integrated with a sensor node that detects an event in the environment. Present day edge intelligent devices are typically based on hybrid CMOS-memristor arrays that have been so far designed for fast switching, typically in the range of nanoseconds, low energy consumption (typically in nano-Joules), high density and endurance (exceeding 1015 cycles). On the other hand, sensory-processing systems that have the same time constants and dynamics as their input signals, are best placed to learn or extract information from them. To meet this requirement, many applications are implemented using external “delay” in the memristor, in a process which enables each synapse to be modeled as a combination of a temporal delay and a spatial weight parameter. This thesis demonstrates a synaptic thin film transistor capable of inherent logic functions as well as compute-in-memory on similar time scales as biological events. Even beyond a conventional crossbar array architecture, we have relied on new concepts in reservoir computing to demonstrate a delay system reservoir with the highest learning efficiency of 95% reported to date, in comparison to equivalent two terminal memristors, using a single device for the task of image processing. The crux of our findings relied on enhancing our capability to model the unique physics of the device, in the scope of the current thesis, that is not amenable to conventional TCAD simulations. The model provides new insight into the redox characteristics of the gate current and paves way for assessment of device performance in compute-in-memory applications. The diffusion-based mechanism of the device, effectively enables time constants that have potential in applications such as gesture recognition and detection of cardiac arrythmia. The thesis also reports a new orientation of a solution processed perovskite solar cell with an efficiency of 14.9% that is easily integrable into an intelligent sensor node. We examine the influence of the growth orientation on film morphology and solar cell efficiency. Collectively, our work aids the development of more energy-efficient, powerful edge-computing sensor systems for upcoming applications of the IOT

    Memristive Anodic Oxides: Production, Properties and Applications in Neuromorphic Computing

    Get PDF
    Memristive devices generally consist of metal oxide elements with specific structure and chemical composition, which are crucial to obtain the required variability in resistance. This makes the control of oxide properties vital. While CMOS compatible production technologies for metal oxides deposition generally involve physical or chemical deposition pathways, we here describe the possibility of using an electrochemical technique, anodic oxidation, as an alternative route to produce memristive oxides. In fact, anodization allows to form a very large range of oxides on the surface of valve metals, such as titanium, hafnium, niobium and tantalum, whose thickness, structure and functional properties depend on process parameters imposed. These oxides may be of interest to build neural networks based on memristive elements produced by anodic oxidation

    Organic Bioelectronics Development in Italy: A Review

    Get PDF
    In recent years, studies concerning Organic Bioelectronics have had a constant growth due to the interest in disciplines such as medicine, biology and food safety in connecting the digital world with the biological one. Specific interests can be found in organic neuromorphic devices and organic transistor sensors, which are rapidly growing due to their low cost, high sensitivity and biocompatibility. This trend is evident in the literature produced in Italy, which is full of breakthrough papers concerning organic transistors-based sensors and organic neuromorphic devices. Therefore, this review focuses on analyzing the Italian production in this field, its trend and possible future evolutions

    Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing

    Get PDF
    Here, various synaptic functions and neural network simulation based pattern-recognition using novel, solution-processed organic memtransistors (memTs) with an unconventional redox-gating mechanism are demonstrated. Our synaptic memT device using conjugated polymer thin-film and redox-active solid electrolyte as the gate dielectric can be routinely operated at gate voltages (V(GS)) below − 1.5 V, subthreshold-swings (S) smaller than 120 mV/dec, and ON/OFF current ratio larger than 10(8). Large hysteresis in transfer curves depicts the signature of non-volatile resistive switching (RS) property with ON/OFF ratio as high as 10(5). In addition, our memT device also shows many synaptic functions, including the availability of many conducting-states (> 500) that are used for efficient pattern recognition using the simplest neural network simulation model with training and test accuracy higher than 90%. Overall, the presented approach opens a new and promising way to fabricate high-performance artificial synapses and their arrays for the implementation of hardware-oriented neural network

    Review on data-centric brain-inspired computing paradigms exploiting emerging memory devices

    Get PDF
    Biologically-inspired neuromorphic computing paradigms are computational platforms that imitate synaptic and neuronal activities in the human brain to process big data flows in an efficient and cognitive manner. In the past decades, neuromorphic computing has been widely investigated in various application fields such as language translation, image recognition, modeling of phase, and speech recognition, especially in neural networks (NNs) by utilizing emerging nanotechnologies; due to their inherent miniaturization with low power cost, they can alleviate the technical barriers of neuromorphic computing by exploiting traditional silicon technology in practical applications. In this work, we review recent advances in the development of brain-inspired computing (BIC) systems with respect to the perspective of a system designer, from the device technology level and circuit level up to the architecture and system levels. In particular, we sort out the NN architecture determined by the data structures centered on big data flows in application scenarios. Finally, the interactions between the system level with the architecture level and circuit/device level are discussed. Consequently, this review can serve the future development and opportunities of the BIC system design

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community
    corecore