1,176 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Emerging trends in optimal structural health monitoring system design: From sensor placement to system evaluation

    Get PDF
    This paper presents a review of advances in the field of Sensor Placement Optimisation (SPO) strategies for Structural Health Monitoring (SHM). This task has received a great deal of attention in the research literature, from initial foundations in the control engineering literature to adoption in a modal or system identification context in the structural dynamics community. Recent years have seen an increasing focus on methods that are specific to damage identification, with the maximisation of correct classification outcomes being prioritised. The objectives of this article are to present the SPO for SHM problem, to provide an overview of the current state of the art in this area, and to identify promising emergent trends within the literature. The key conclusions drawn are that there remains a great deal of scope for research in a number of key areas, including the development of methods that promote robustness to modelling uncertainty, benign effects within measured data, and failures within the sensor network. There also remains a paucity of studies that demonstrate practical, experimental evaluation of developed SHM system designs. Finally, it is argued that the pursuit of novel or highly efficient optimisation methods may be considered to be of secondary importance in an SPO context, given that the optimisation effort is expended at the design stage

    Locating bugs without looking back

    Get PDF
    Bug localisation is a core program comprehension task in software maintenance: given the observation of a bug, e.g. via a bug report, where is it located in the source code? Information retrieval (IR) approaches see the bug report as the query, and the source code files as the documents to be retrieved, ranked by relevance. Such approaches have the advantage of not requiring expensive static or dynamic analysis of the code. However, current state-of-the-art IR approaches rely on project history, in particular previously fixed bugs or previous versions of the source code. We present a novel approach that directly scores each current file against the given report, thus not requiring past code and reports. The scoring method is based on heuristics identified through manual inspection of a small sample of bug reports. We compare our approach to eight others, using their own five metrics on their own six open source projects. Out of 30 performance indicators, we improve 27 and equal 2. Over the projects analysed, on average we find one or more affected files in the top 10 ranked files for 76% of the bug reports. These results show the applicability of our approach to software projects without history

    Genetic algorithm for automatic optical inspection

    Get PDF
    • …
    corecore