7 research outputs found

    Will TCP work in mmWave 5G Cellular Networks?

    Full text link
    The vast available spectrum in the millimeter wave (mmWave) bands offers the possibility of multi-Gbps data rates for fifth generation (5G) cellular networks. However, mmWave capacity can be highly intermittent due to the vulnerability of mmWave signals to blockages and delays in directional searching. Such highly variable links present unique challenges for adaptive control mechanisms in transport layer protocols and end-to-end applications. This paper considers the fundamental question of whether TCP - the most widely used transport protocol - will work in mmWave cellular systems. The paper provides a comprehensive simulation study of TCP considering various factors such as the congestion control algorithm, including the recently proposed TCP BBR, edge vs. remote servers, handover and multi- connectivity, TCP packet size and 3GPP-stack parameters. We show that the performance of TCP on mmWave links is highly dependent on different combinations of these parameters, and identify the open challenges in this area.Comment: 7 pages, 4 figures, 2 tables. To be published in the IEEE Communication Magazin

    Advanced Resource Management Techniques for Next Generation Wireless Networks

    Get PDF
    The increasing penetration of mobile devices in everyday life is posing a broad range of research challenges to meet such a massive data demand. Mobile users seek connectivity "anywhere, at anytime". In addition, killer applications with multimedia contents, like video transmissions, require larger amounts of resources to cope with tight quality constraints. Spectrum scarcity and interference issues represent the key aspects of next generation wireless networks. Consequently, designing proper resource management solutions is critical. To this aim, we first propose a model to better assess the performance of Orthogonal Frequency-Division Multiple Access (OFDMA)-based simulated cellular networks. A link abstraction of the downlink data transmission can provide an accurate performance metric at a low computational cost. Our model combines Mutual Information-based multi-carrier compression metrics with Link-Level performance profiles, thus expressing the dependency of the transmitted data Block Error Rate (BLER) on the SINR values and on the modulation and coding scheme (MCS) being assigned. In addition, we aim at evaluating the impact of Jumboframes transmission in LTE networks, which are packets breaking the 1500-byte legacy value. A comparative evaluation is performed based on diverse network configuration criteria, thus highlighting specific limitations. In particular, we observed rapid buffer saturation under certain circumstances, due to the transmission of oversized packets with scarce radio resources. A novel cross-layer approach is proposed to prevent saturation, and thus tune the transmitted packet size with the instantaneous channel conditions, fed back through standard CQI-based procedures. Recent advances in wireless networking introduce the concept of resource sharing as one promising way to enhance the performance of radio communications. As the wireless spectrum is a scarce resource, and its usage is often found to be inefficient, it may be meaningful to design solutions where multiple operators join their efforts, so that wireless access takes place on shared, rather than proprietary to a single operator, frequency bands. In spite of the conceptual simplicity of this idea, the resulting mathematical analysis may be very complex, since it involves analytical representation of multiple wireless channels. Thus, we propose an evaluative tool for spectrum sharing techniques in OFDMA-based wireless networks, where multiple sharing policies can be easily integrated and, consequently, evaluated. On the other hand, relatively to contention-based broadband wireless access, we target an important issue in mobile ad hoc networks: the intrinsic inefficiency of the standard transmission control protocol (TCP), which presents degraded performance mainly due to mechanisms such as congestion control and avoidance. In fact, TCP was originally designed for wired networks, where packet losses indicate congestion. Conversely, channels in wireless networks might vary rapidly, thus most loss events are due to channel errors or link layer contention. We aim at designing a light-weight cross-layer framework which, differently from many other works in the literature, is based on the cognitive network paradigm. It includes an observation phase, i.e., a training set in which the network parameters are collected; a learning phase, in which the information to be used is extracted from the data; a planning phase, in which we define the strategies to trigger; an acting phase, which corresponds to dynamically applying such strategies during network simulations. The next generation mobile infrastructure frontier relies on the concept of heterogeneous networks. However, the existence of multiple types of access nodes poses new challenges such as more stringent interference constraints due to node densification and self-deployed access. Here, we propose methods that aim at extending femto cells coverage range by enabling idle User Equipments (UE) to serve as relays. This way, UEs otherwise connected to macro cells can be offloaded to femto cells through UE relays. A joint resource allocation and user association scheme based on the solutions of a convex optimization problem is proposed. Another challenging issue to be addressed in such scenarios is admission control, which is in charge of ensuring that, when a new resource reservation is accepted, previously connected users continue having their QoS guarantees honored. Thus, we consider different approaches to compute the aggregate projected capacity in OFDMA-based networks, and propose the E-Diophantine solution, whose mathematical foundation is provided along with the performance improvements to be expected, both in accuracy and computational terms

    Middleware de comunicações para a internet móvel futura

    Get PDF
    Doutoramento em Informática (MAP-I)A evolução constante em novas tecnologias que providenciam suporte à forma como os nossos dispositivos se ligam, bem como a forma como utilizamos diferentes capacidades e serviços on-line, criou um conjunto sem precedentes de novos desafios que motivam o desenvolvimento de uma recente área de investigação, denominada de Internet Futura. Nesta nova área de investigação, novos aspectos arquiteturais estão ser desenvolvidos, os quais, através da re-estruturação de componentes nucleares subjacentesa que compõem a Internet, progride-a de uma forma capaz de não são fazer face a estes novos desafios, mas também de a preparar para os desafios de amanhã. Aspectos chave pertencendo a este conjunto de desafios são os ambientes de rede heterogéneos compostos por diferentes tipos de redes de acesso, a cada vez maior mudança do tráfego peer-to-peer (P2P) como o tipo de tráfego mais utilizado na Internet, a orquestração de cenários da Internet das Coisas (IoT) que exploram mecanismos de interação Maquinaa-Maquina (M2M), e a utilização de mechanismos centrados na informação (ICN). Esta tese apresenta uma nova arquitetura capaz de simultaneamente fazer face a estes desafios, evoluindo os procedimentos de conectividade e entidades envolvidas, através da adição de uma camada de middleware, que age como um mecanismo de gestão de controlo avançado. Este mecanismo de gestão de controlo aproxima as entidades de alto nível (tais como serviços, aplicações, entidades de gestão de mobilidade, operações de encaminhamento, etc.) com as componentes das camadas de baixo nível (por exemplo, camadas de ligação, sensores e atuadores), permitindo uma otimização conjunta dos procedimentos de ligação subjacentes. Os resultados obtidos não só sublinham a flexibilidade dos mecanismos que compoem a arquitetura, mas também a sua capacidade de providenciar aumentos de performance quando comparados com outras soluÇÕes de funcionamento especÍfico, enquanto permite um maior leque de cenáios e aplicações.The constant evolution in new technologies that support the way our devices are able to connect, as well the way we use available on-line services and capabilities, has created a set of unprecedented new challenges that motivated the development of a recent research trend known as the Future Internet. In this research trend, new architectural aspects are being developed which, through the restructure of underlying core aspects composing the Internet, reshapes it in a way capable of not only facing these new challenges, but also preparing it to tackle tomorrow’s new set of complex issues. Key aspects belonging to this set of challenges are heterogeneous networking environments composed by di↵erent kinds of wireless access networks, the evergrowing change from peer-to-peer (P2P) to video as the most used kind of traffic in the Internet, the orchestration of Internet of Things (IoT) scenarios exploiting Machine-to-Machine (M2M) interactions, and the usage of Information-Centric Networking (ICN). This thesis presents a novel framework able to simultaneous tackle these challenges, empowering connectivity procedures and entities with a middleware acting as an advanced control management mechanism. This control management mechanism brings together both high-level entities (such as application services, mobility management entities, routing operations, etc.) with the lower layer components (e.g., link layers, sensor devices, actuators), allowing for a joint optimization of the underlying connectivity and operational procedures. Results highlight not only the flexibility of the mechanisms composing the framework, but also their ability in providing performance increases when compared with other specific purpose solutions, while allowing a wider range of scenarios and deployment possibilities

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    XIII Jornadas de ingeniería telemática (JITEL 2017)

    Full text link
    Las Jornadas de Ingeniería Telemática (JITEL), organizadas por la Asociación de Telemática (ATEL), constituyen un foro propicio de reunión, debate y divulgación para los grupos que imparten docencia e investigan en temas relacionados con las redes y los servicios telemáticos. Con la organización de este evento se pretende fomentar, por un lado el intercambio de experiencias y resultados, además de la comunicación y cooperación entre los grupos de investigación que trabajan en temas relacionados con la telemática. En paralelo a las tradicionales sesiones que caracterizan los congresos científicos, se desea potenciar actividades más abiertas, que estimulen el intercambio de ideas entre los investigadores experimentados y los noveles, así como la creación de vínculos y puntos de encuentro entre los diferentes grupos o equipos de investigación. Para ello, además de invitar a personas relevantes en los campos correspondientes, se van a incluir sesiones de presentación y debate de las líneas y proyectos activos de los mencionados equiposLloret Mauri, J.; Casares Giner, V. (2018). XIII Jornadas de ingeniería telemática (JITEL 2017). Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/97612EDITORIA

    Evaluation of Jumboframes feasibility in LTE access networks

    No full text
    Long Term Evolution (LTE) represents the cutting-edge broadband wireless access technology in providing ubiquitous and simultaneous connectivity to many users. This paper evaluates the impact that packets breaking the 1500 bytes legacy value, called Jumboframes, have in LTE networks, by exploiting and extending the network stack in the ns-3 simulator. We first provide an overview about the key features of LTE starting from a physical layer perspective, to logical functions like the adaptive modulation and coding scheme, together with a detailed description of the Radio Link Control (RLC) segmentation capabilities. A comparative evaluation is performed based on diverse network configuration criteria, such as user position, density and mobility. We aim at assessing the benefits and caveats that derive from Jumboframes usage in LTE networks. Moreover, a novel cross-layer approach is proposed to mitigate the effect of rapid buffer saturation, due to the transmission of oversized packets with scarce radio resources. To conclude, we test our framework through the analysis of realistic video traces

    Evaluation of jumboframes feasibility in LTE access networks

    No full text
    corecore