100 research outputs found

    A Two-stream Convolutional Network for Musculoskeletal and Neurological Disorders Prediction

    Get PDF
    Musculoskeletal and neurological disorders are the most common causes of walking problems among older people, and they often lead to diminished quality of life. Analyzing walking motion data manually requires trained professionals and the evaluations may not always be objective. To facilitate early diagnosis, recent deep learning-based methods have shown promising results for automated analysis, which can discover patterns that have not been found in traditional machine learning methods. We observe that existing work mostly applies deep learning on individual joint features such as the time series of joint positions. Due to the challenge of discovering inter-joint features such as the distance between feet (i.e. the stride width) from generally smaller-scale medical datasets, these methods usually perform sub-optimally. As a result, we propose a solution that explicitly takes both individual joint features and inter-joint features as input, relieving the system from the need of discovering more complicated features from small data. Due to the distinctive nature of the two types of features, we introduce a two-stream framework, with one stream learning from the time series of joint position and the other from the time series of relative joint displacement. We further develop a mid-layer fusion module to combine the discovered patterns in these two streams for diagnosis, which results in a complementary representation of the data for better prediction performance. We validate our system with a benchmark dataset of 3D skeleton motion that involves 45 patients with musculoskeletal and neurological disorders, and achieve a prediction accuracy of 95.56%, outperforming state-of-the-art methods

    Muscle "islands": an MRI signature distinguishing neurogenic from myopathic causes of early onset distal weakness

    Get PDF
    Muscle MRI has an increasing role in diagnosis of inherited neuromuscular diseases, but no features are known which reliably differentiate myopathic and neurogenic conditions. Using patients presenting with early onset distal weakness, we aimed to identify an MRI signature to distinguish myopathic and neurogenic conditions. We identified lower limb MRI scans from patients with either genetically (n=24) or clinically (n=13) confirmed diagnoses of childhood onset distal myopathy or distal spinal muscular atrophy. An initial exploratory phase reviewed 11 scans from genetically confirmed patients identifying a single potential discriminatory marker concerning the pattern of fat replacement within muscle, coined “islands”. This pattern comprised small areas of muscle tissue with normal signal intensity completely surrounded by areas with similar intensity to subcutaneous fat. In the subsequent validation phase, islands correctly classified scans from all 12 remaining genetically confirmed patients, and 12/13 clinically classified patients. In the genetically confirmed patients MRI classification of neurogenic/myopathic aetiology had 100% accuracy (24/24) compared with 65% accuracy (15/23) for EMG, and 79% accuracy (15/19) for muscle biopsy. Future studies are needed in other clinical contexts, however the presence of islands appears to highly suggestive of a neurogenic aetiology in patients presenting with early onset distal motor weakness

    A Two-stream Convolutional Network for Musculoskeletal and Neurological Disorders Prediction

    Get PDF
    Musculoskeletal and neurological disorders are the most common causes of walking problems among older people, and they often lead to diminished quality of life. Analyzing walking motion data manually requires trained professionals and the evaluations may not always be objective. To facilitate early diagnosis, recent deep learning-based methods have shown promising results for automated analysis, which can discover patterns that have not been found in traditional machine learning methods. We observe that existing work mostly applies deep learning on individual joint features such as the time series of joint positions. Due to the challenge of discovering inter-joint features such as the distance between feet (i.e. the stride width) from generally smaller-scale medical datasets, these methods usually perform sub-optimally. As a result, we propose a solution that explicitly takes both individual joint features and inter-joint features as input, relieving the system from the need of discovering more complicated features from small data. Due to the distinctive nature of the two types of features, we introduce a two-stream framework, with one stream learning from the time series of joint position and the other from the time series of relative joint displacement. We further develop a mid-layer fusion module to combine the discovered patterns in these two streams for diagnosis, which results in a complementary representation of the data for better prediction performance. We validate our system with a benchmark dataset of 3D skeleton motion that involves 45 patients with musculoskeletal and neurological disorders, and achieve a prediction accuracy of 95.56%, outperforming state-of-the-art methods

    Understanding Neuromuscular Health and Disease: Advances in Genetics, Omics, and Molecular Function

    Get PDF
    This compilation focuses on recent advances in the molecular and cellular understandingof neuromuscular biology, and the treatment of neuromuscular disease.These advances are at the forefront of modern molecular methodologies, oftenintegrating across wet-lab cell and tissue models, dry-lab computational approaches,and clinical studies. The continuing development and application ofmultiomics methods offer particular challenges and opportunities in the field,not least in the potential for personalized medicine

    Sensor Technologies to Manage the Physiological Traits of Chronic Pain: A Review

    Get PDF
    Non-oncologic chronic pain is a common high-morbidity impairment worldwide and acknowledged as a condition with significant incidence on quality of life. Pain intensity is largely perceived as a subjective experience, what makes challenging its objective measurement. However, the physiological traces of pain make possible its correlation with vital signs, such as heart rate variability, skin conductance, electromyogram, etc., or health performance metrics derived from daily activity monitoring or facial expressions, which can be acquired with diverse sensor technologies and multisensory approaches. As the assessment and management of pain are essential issues for a wide range of clinical disorders and treatments, this paper reviews different sensor-based approaches applied to the objective evaluation of non-oncological chronic pain. The space of available technologies and resources aimed at pain assessment represent a diversified set of alternatives that can be exploited to address the multidimensional nature of pain.Ministerio de Economía y Competitividad (Instituto de Salud Carlos III) PI15/00306Junta de Andalucía PIN-0394-2017Unión Europea "FRAIL

    A review of computer vision-based approaches for physical rehabilitation and assessment

    Get PDF
    The computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered

    DIAGNOSTICS OF DEMENTIA FROM STRUCTURAL AND FUNCTIONAL MARKERS OF BRAIN ATROPHY WITH MACHINE LEARNING

    Get PDF
    Dementia is a condition in which higher mental functions are disrupted. It currently affects an estimated 57 million people throughout the world. A dementia diagnosis is difficult since neither anatomical indicators nor functional testing is currently sufficiently sensitive or specific. There remains a long list of outstanding issues that must be addressed. First, multimodal diagnosis has yet to be introduced into the early stages of dementia screening. Second, there is no accurate instrument for predicting the progression of pre-dementia. Third, non-invasive testing cannot be used to provide differential diagnoses. By creating ML models of normal and accelerated brain aging, we intend to better understand brain development. The combined analysis of distinct imaging and functional modalities will improve diagnostics of accelerated decline with advanced data science techniques, which is the main objective of our study. Hypothetically, an association between brain structural changes and cognitive performance differs between normal and accelerated aging. We propose using brain MRI scans to estimate the cognitive status of the cognitively preserved examinee and develop a structure-function model with machine learning (ML). Accelerated ageing is suspected when a scanned individual’s findings do not align with the usual paradigm. We calculate the deviation from the model of normal ageing (DMNA) as the error of cognitive score prediction. Then the obtained data may be compared with the results of conducted cognitive tests. The greater the difference between the expected and observed values, the greater the risk of dementia. DMNA can discern between cognitively normal and mild cognitive impairment (MCI) patients. The model was proven to perform well in the MCI-versus-Alzheimer’s disease (AD) categorization. DMNA is a potential diagnostic marker of dementia and its types

    ACTIVATED CARBON NANOFIBERS FROM RENEWABLE (LIGNIN) AND WASTE RESOURCES (RECYCLED PET) AND THEIR ADSORPTION CAPACITY OF REFRACTORY SULFUR COMPOUNDS FROM FOSSIL FUELS

    Get PDF
    Dementia is a condition in which higher mental functions are disrupted. It currently affects an estimated 57 million people throughout the world. Dementia diagnosis is difficult since neither anatomical indicator nor functional testing are currently sufficiently sensitive or specific. There remains a long list of outstanding issues that must be addressed. First, multimodal diagnosis has yet to be introduced into the early stages of dementia screening. Second, there is no accurate instrument for predicting the progression of pre-dementia. Third, non-invasive testing cannot be used to provide differential diagnoses. By creating ML models of normal and accelerated brain aging, we intend to better understand brain development. The combined analysis of distinct imaging and functional modalities will improve diagnostics of accelerated decline with advanced data science techniques, which is the main objective of our study. Hypothetically, an association between brain structural changes and cognitive performance differs between normal and accelerated aging. We propose using brain MRI scans to estimate the cognitive status of the cognitively preserved examinee and develop a structure-function model with machine learning (ML). Accelerated aging is suspected when a scanned individual’s findings do not align with the usual paradigm. We calculate the deviation from the model of normal aging (DMNA) as the error of cognitive score prediction. Then the obtained data may be compared with the results of conducted cognitive tests. The greater the difference between the expected and observed values, the greater the risk of dementia. DMNA can discern between cognitively normal and mild cognitive impairment (MCI) patients. The model was proven to perform well in the MCI-versus-Alzheimer’s disease (AD) categorization. DMNA is a potential diagnostic marker of dementia and its types
    corecore