13,599 research outputs found

    Guided Curriculum Model Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

    Full text link
    Most progress in semantic segmentation reports on daytime images taken under favorable illumination conditions. We instead address the problem of semantic segmentation of nighttime images and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night via labeled synthetic images and unlabeled real images, both for progressively darker times of day, which exploits cross-time-of-day correspondences for the real images to guide the inference of their labels; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, designed for adverse conditions and including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, which comprises 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 151 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark to perform our novel evaluation. Experiments show that our guided curriculum adaptation significantly outperforms state-of-the-art methods on real nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can lead to better results on data with ambiguous content such as our nighttime benchmark and profit safety-oriented applications which involve invalid inputs.Comment: ICCV 2019 camera-read

    Map-Guided Curriculum Domain Adaptation and Uncertainty-Aware Evaluation for Semantic Nighttime Image Segmentation

    Full text link
    We address the problem of semantic nighttime image segmentation and improve the state-of-the-art, by adapting daytime models to nighttime without using nighttime annotations. Moreover, we design a new evaluation framework to address the substantial uncertainty of semantics in nighttime images. Our central contributions are: 1) a curriculum framework to gradually adapt semantic segmentation models from day to night through progressively darker times of day, exploiting cross-time-of-day correspondences between daytime images from a reference map and dark images to guide the label inference in the dark domains; 2) a novel uncertainty-aware annotation and evaluation framework and metric for semantic segmentation, including image regions beyond human recognition capability in the evaluation in a principled fashion; 3) the Dark Zurich dataset, comprising 2416 unlabeled nighttime and 2920 unlabeled twilight images with correspondences to their daytime counterparts plus a set of 201 nighttime images with fine pixel-level annotations created with our protocol, which serves as a first benchmark for our novel evaluation. Experiments show that our map-guided curriculum adaptation significantly outperforms state-of-the-art methods on nighttime sets both for standard metrics and our uncertainty-aware metric. Furthermore, our uncertainty-aware evaluation reveals that selective invalidation of predictions can improve results on data with ambiguous content such as our benchmark and profit safety-oriented applications involving invalid inputs.Comment: IEEE T-PAMI 202

    Counting with Focus for Free

    Get PDF
    This paper aims to count arbitrary objects in images. The leading counting approaches start from point annotations per object from which they construct density maps. Then, their training objective transforms input images to density maps through deep convolutional networks. We posit that the point annotations serve more supervision purposes than just constructing density maps. We introduce ways to repurpose the points for free. First, we propose supervised focus from segmentation, where points are converted into binary maps. The binary maps are combined with a network branch and accompanying loss function to focus on areas of interest. Second, we propose supervised focus from global density, where the ratio of point annotations to image pixels is used in another branch to regularize the overall density estimation. To assist both the density estimation and the focus from segmentation, we also introduce an improved kernel size estimator for the point annotations. Experiments on six datasets show that all our contributions reduce the counting error, regardless of the base network, resulting in state-of-the-art accuracy using only a single network. Finally, we are the first to count on WIDER FACE, allowing us to show the benefits of our approach in handling varying object scales and crowding levels. Code is available at https://github.com/shizenglin/Counting-with-Focus-for-FreeComment: ICCV, 201

    Computerized Analysis of Magnetic Resonance Images to Study Cerebral Anatomy in Developing Neonates

    Get PDF
    The study of cerebral anatomy in developing neonates is of great importance for the understanding of brain development during the early period of life. This dissertation therefore focuses on three challenges in the modelling of cerebral anatomy in neonates during brain development. The methods that have been developed all use Magnetic Resonance Images (MRI) as source data. To facilitate study of vascular development in the neonatal period, a set of image analysis algorithms are developed to automatically extract and model cerebral vessel trees. The whole process consists of cerebral vessel tracking from automatically placed seed points, vessel tree generation, and vasculature registration and matching. These algorithms have been tested on clinical Time-of- Flight (TOF) MR angiographic datasets. To facilitate study of the neonatal cortex a complete cerebral cortex segmentation and reconstruction pipeline has been developed. Segmentation of the neonatal cortex is not effectively done by existing algorithms designed for the adult brain because the contrast between grey and white matter is reversed. This causes pixels containing tissue mixtures to be incorrectly labelled by conventional methods. The neonatal cortical segmentation method that has been developed is based on a novel expectation-maximization (EM) method with explicit correction for mislabelled partial volume voxels. Based on the resulting cortical segmentation, an implicit surface evolution technique is adopted for the reconstruction of the cortex in neonates. The performance of the method is investigated by performing a detailed landmark study. To facilitate study of cortical development, a cortical surface registration algorithm for aligning the cortical surface is developed. The method first inflates extracted cortical surfaces and then performs a non-rigid surface registration using free-form deformations (FFDs) to remove residual alignment. Validation experiments using data labelled by an expert observer demonstrate that the method can capture local changes and follow the growth of specific sulcus
    • …
    corecore