404 research outputs found

    An investigation of supervector regression for forensic voice comparison on small data

    Get PDF
    International audienceThe present paper deals with an observer design for a nonlinear lateral vehicle model. The nonlinear model is represented by an exact Takagi-Sugeno (TS) model via the sector nonlinearity transformation. A proportional multiple integral observer (PMIO) based on the TS model is designed to estimate simultaneously the state vector and the unknown input (road curvature). The convergence conditions of the estimation error are expressed under LMI formulation using the Lyapunov theory which guaranties bounded error. Simulations are carried out and experimental results are provided to illustrate the proposed observer

    The Effect Of Acoustic Variability On Automatic Speaker Recognition Systems

    Get PDF
    This thesis examines the influence of acoustic variability on automatic speaker recognition systems (ASRs) with three aims. i. To measure ASR performance under 5 commonly encountered acoustic conditions; ii. To contribute towards ASR system development with the provision of new research data; iii. To assess ASR suitability for forensic speaker comparison (FSC) application and investigative/pre-forensic use. The thesis begins with a literature review and explanation of relevant technical terms. Five categories of research experiments then examine ASR performance, reflective of conditions influencing speech quantity (inhibitors) and speech quality (contaminants), acknowledging quality often influences quantity. Experiments pertain to: net speech duration, signal to noise ratio (SNR), reverberation, frequency bandwidth and transcoding (codecs). The ASR system is placed under scrutiny with examination of settings and optimum conditions (e.g. matched/unmatched test audio and speaker models). Output is examined in relation to baseline performance and metrics assist in informing if ASRs should be applied to suboptimal audio recordings. Results indicate that modern ASRs are relatively resilient to low and moderate levels of the acoustic contaminants and inhibitors examined, whilst remaining sensitive to higher levels. The thesis provides discussion on issues such as the complexity and fragility of the speech signal path, speaker variability, difficulty in measuring conditions and mitigation (thresholds and settings). The application of ASRs to casework is discussed with recommendations, acknowledging the different modes of operation (e.g. investigative usage) and current UK limitations regarding presenting ASR output as evidence in criminal trials. In summary, and in the context of acoustic variability, the thesis recommends that ASRs could be applied to pre-forensic cases, accepting extraneous issues endure which require governance such as validation of method (ASR standardisation) and population data selection. However, ASRs remain unsuitable for broad forensic application with many acoustic conditions causing irrecoverable speech data loss contributing to high error rates

    Forensic and Automatic Speaker Recognition System

    Get PDF
    Current Automatic Speaker Recognition (ASR) System has emerged as an important medium of confirmation of identity in many businesses, ecommerce applications, forensics and law enforcement as well. Specialists trained in criminological recognition can play out this undertaking far superior by looking at an arrangement of acoustic, prosodic, and semantic attributes which has been referred to as structured listening. An algorithmbased system has been developed in the recognition of forensic speakers by physics scientists and forensic linguists to reduce the probability of a contextual bias or pre-centric understanding of a reference model with the validity of an unknown audio sample and any suspicious individual. Many researchers are continuing to develop automatic algorithms in signal processing and machine learning so that improving performance can effectively introduce the speaker’s identity, where the automatic system performs equally with the human audience. In this paper, I examine the literature about the identification of speakers by machines and humans, emphasizing the key technical speaker pattern emerging for the automatic technology in the last decade. I focus on many aspects of automatic speaker recognition (ASR) systems, including speaker-specific features, speaker models, standard assessment data sets, and performance metric

    From features to speaker vectors by means of restricted Boltzmann machine adaptation

    Get PDF
    Restricted Boltzmann Machines (RBMs) have shown success in different stages of speaker recognition systems. In this paper, we propose a novel framework to produce a vector-based representation for each speaker, which will be referred to as RBM-vector. This new approach maps the speaker spectral features to a single fixed-dimensional vector carrying speaker-specific information. In this work, a global model, referred to as Universal RBM (URBM), is trained taking advantage of RBM unsupervised learning capabilities. Then, this URBM is adapted to the data of each speaker in the development, enrolment and evaluation datasets. The network connection weights of the adapted RBMs are further concatenated and subject to a whitening with dimension reduction stage to build the speaker vectors. The evaluation is performed on the core test condition of the NIST SRE 2006 database, and it is shown that RBM-vectors achieve 15% relative improvement in terms of EER compared to i-vectors using cosine scoring. The score fusion with i-vector attains more than 24% relative improvement. The interest of this result for score fusion yields on the fact that both vectors are produced in an unsupervised fashion and can be used instead of i-vector/PLDA approach, when no data label is available. Results obtained for RBM-vector/PLDA framework is comparable with the ones from i-vector/PLDA. Their score fusion achieves 14% relative improvement compared to i-vector/PLDA.Peer ReviewedPostprint (published version

    Deep learning methods in speaker recognition: a review

    Full text link
    This paper summarizes the applied deep learning practices in the field of speaker recognition, both verification and identification. Speaker recognition has been a widely used field topic of speech technology. Many research works have been carried out and little progress has been achieved in the past 5-6 years. However, as deep learning techniques do advance in most machine learning fields, the former state-of-the-art methods are getting replaced by them in speaker recognition too. It seems that DL becomes the now state-of-the-art solution for both speaker verification and identification. The standard x-vectors, additional to i-vectors, are used as baseline in most of the novel works. The increasing amount of gathered data opens up the territory to DL, where they are the most effective

    Speaker recognition by means of restricted Boltzmann machine adaptation

    Get PDF
    Restricted Boltzmann Machines (RBMs) have shown success in speaker recognition. In this paper, RBMs are investigated in a framework comprising a universal model training and model adaptation. Taking advantage of RBM unsupervised learning algorithm, a global model is trained based on all available background data. This general speaker-independent model, referred to as URBM, is further adapted to the data of a specific speaker to build speaker-dependent model. In order to show its effectiveness, we have applied this framework to two different tasks. It has been used to discriminatively model target and impostor spectral features for classification. It has been also utilized to produce a vector-based representation for speakers. This vector-based representation, similar to i-vector, can be further used for speaker recognition using either cosine scoring or Probabilistic Linear Discriminant Analysis (PLDA). The evaluation is performed on the core test condition of the NIST SRE 2006 database.Peer ReviewedPostprint (author's final draft

    Cepstral trajectories in linguistic units for text-independent speaker recognition

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-35292-8_3Proceedings of IberSPEECH, held in Madrid (Spain) on 2012.In this paper, the contributions of different linguistic units to the speaker recognition task are explored by means of temporal trajectories of their MFCC features. Inspired by successful work in forensic speaker identification, we extend the approach based on temporal contours of formant frequencies in linguistic units to design a fully automatic system that puts together both forensic and automatic speaker recognition worlds. The combination of MFCC features and unit-dependent trajectories provides a powerful tool to extract individualizing information. At a fine-grained level, we provide a calibrated likelihood ratio per linguistic unit under analysis (extremely useful in applications such as forensics), and at a coarse-grained level, we combine the individual contributions of the different units to obtain a highly discriminative single system. This approach has been tested with NIST SRE 2006 datasets and protocols, consisting of 9,720 trials from 219 male speakers for the 1side-1side English-only task, and development data being extracted from 367 male speakers from 1,808 conversations from NIST SRE 2004 and 2005 datasetsSupported by MEC grant PR-2010-123, MICINN project TEC09-14179, ForBayes project CCG10-UAM/TIC-5792 and Cátedra UAM-Telefónica
    • …
    corecore