167 research outputs found

    In good company? : Perception of movement synchrony of a non-anthropomorphic robot

    Get PDF
    Copyright: © 2015 Lehmann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Recent technological developments like cheap sensors and the decreasing costs of computational power have brought the possibility of robotic home companions within reach. In order to be accepted it is vital for these robots to be able to participate meaningfully in social interactions with their users and to make them feel comfortable during these interactions. In this study we investigated how people respond to a situation where a companion robot is watching its user. Specifically, we tested the effect of robotic behaviours that are synchronised with the actions of a human. We evaluated the effects of these behaviours on the robot’s likeability and perceived intelligence using an online video survey. The robot used was Care-O-botÂź3, a non-anthropomorphic robot with a limited range of expressive motions. We found that even minimal, positively synchronised movements during an object-oriented task were interpreted by participants as engagement and created a positive disposition towards the robot. However, even negatively synchronised movements of the robot led to more positive perceptions of the robot, as compared to a robot that does not move at all. The results emphasise a) the powerful role that robot movements in general can have on participants’ perception of the robot, and b) that synchronisation of body movements can be a powerful means to enhance the positive attitude towards a non-anthropomorphic robot.Peer reviewe

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    A Study of Non-Linguistic Utterances for Social Human-Robot Interaction

    Get PDF
    The world of animation has painted an inspiring image of what the robots of the future could be. Taking the robots R2D2 and C3PO from the Star Wars films as representative examples, these robots are portrayed as being more than just machines, rather, they are presented as intelligent and capable social peers, exhibiting many of the traits that people have also. These robots have the ability to interact with people, understand us, and even relate to us in very personal ways through a wide repertoire of social cues. As robotic technologies continue to make their way into society at large, there is a growing trend toward making social robots. The field of Human-Robot Interaction concerns itself with studying, developing and realising these socially capable machines, equipping them with a very rich variety of capabilities that allow them to interact with people in natural and intuitive ways, ranging from the use of natural language, body language and facial gestures, to more unique ways such as expression through colours and abstract sounds. This thesis studies the use of abstract, expressive sounds, like those used iconically by the robot R2D2. These are termed Non-Linguistic Utterances (NLUs) and are a means of communication which has a rich history in film and animation. However, very little is understood about how such expressive sounds may be utilised by social robots, and how people respond to these. This work presents a series of experiments aimed at understanding how NLUs can be utilised by a social robot in order to convey affective meaning to people both young and old, and what factors impact on the production and perception of NLUs. Firstly, it is shown that not all robots should use NLUs. The morphology of the robot matters. People perceive NLUs differently across different robots, and not always in a desired manner. Next it is shown that people readily project affective meaning onto NLUs though not in a coherent manner. Furthermore, people's affective inferences are not subtle, rather they are drawn to well established, basic affect prototypes. Moreover, it is shown that the valence of the situation in which an NLU is made, overrides the initial valence of the NLU itself: situational context biases how people perceive utterances made by a robot, and through this, coherence between people in their affective inferences is found to increase. Finally, it is uncovered that NLUs are best not used as a replacement to natural language (as they are by R2D2), rather, people show a preference for them being used alongside natural language where they can play a supportive role by providing essential social cues
    • 

    corecore