9 research outputs found

    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China

    Get PDF
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing ‘normal’ (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance. © 2013 The Authors. Hydrological Processes Published by John Wiley & Sons Ltd

    Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China

    Get PDF
    Glacial lake outburst floods (GLOF) often have a significant impact on downstream users. Including their effects in hydrological models, identifying past occurrences and assessing their potential impacts are challenges for hydrologists working in mountainous catchments. The regularly outbursting Merzbacher Lake is located in the headwaters of the Aksu River, the most important source of water discharge to the Tarim River, northwest China. Modelling its water resources and the evaluation of potential climate change impacts on river discharge are indispensable for projecting future water availability for the intensively cultivated river oases downstream of the Merzbacher Lake and along the Tarim River. The semi-distributed hydrological model SWIM was calibrated to the outlet station Xiehela on the Kumarik River, by discharge the largest tributary to the Aksu River. The glacial lake outburst floods add to the difficulties of modelling this high-mountain, heavily glaciated catchment with poor data coverage and quality. The aims of the study are to investigate the glacier lake outburst floods using a modelling tool. Results include a two-step model calibration of the Kumarik catchment, an approach for the identification of the outburst floods using the measured gauge data and the modelling results and estimations of the outburst flood volumes. Results show that a catchment model can inform GLOF investigations by providing 'normal' (i.e. without the outburst floods) catchment discharge. The comparison of the simulated and observed discharge proves the occurrence of GLOFs and highlights the influences of the GLOFs on the downstream water balance

    A study on water-heat patterns and regional climate of mountain-oasis-desert system in north Tianshan Mountains based on the WRF model

    Get PDF

    EVALUATION OF DIGITAL TWIN APPROACHES FOR THERMAL MODELING AND ENERGY OPTIMIZATION FOR EXISTING BUILDINGS

    Get PDF
    Residential, commercial, and industrial building sectors in the United States were responsible for 42% of the nation’s consumption of 100.2 quadrillion BTUs of energy in 2019 [1]. 80% of the nation’s energy is sourced from fossil fuels, including coal, natural gas, and petroleum. Fossil fuels are known contributors to carbon emissions and climate change, making energy reduction vital. Consequently, New Jersey Department of Military and Veterans Affairs (NJDMAVA) is tasked with evaluating energy consumption and efficiency in all New Jersey Army National Guard (NJARNG) facilities, as mandated by TAG Policy Letter 18-5, Executive Order 13990, and the Energy Independence and Security Act of 2007. This research investigates three building energy consumption modeling (BEM) approaches for colder weather: eQUEST, degree-day modeling, and resistance-capacitance (RC) modeling. Each method has distinct advantages and limitations, but BEM holds promise in identifying cost-effective energy-saving measures, aligning with the goals of government entities like NJDMAVA. Specifically, eQUEST proves valuable for experienced users in energy modeling. Degree-day modeling excels at detecting operational shifts and benchmarking similar facilities. The RC model was able to accurately predict energy savings as a result of changes to thermostat setting

    Ecosystem Service and Land-Use Changes in Asia

    Get PDF
    This book highlights the role of research in Ecosystem Services and Land Use Changes in Asia. The contributions include case studies that explore the impacts of direct and indirect drivers affecting provision of ecosystem services in Asian countries, including China, India, Mongolia, Sri Lanka, and Vietnam. Findings from these empirical studies contribute to developing sustainability in Asia at both local and regional scales
    corecore