631 research outputs found

    Breaking the Screen: Interaction Across Touchscreen Boundaries in Virtual Reality for Mobile Knowledge Workers.

    Get PDF
    Virtual Reality (VR) has the potential to transform knowledge work. One advantage of VR knowledge work is that it allows extending 2D displays into the third dimension, enabling new operations, such as selecting overlapping objects or displaying additional layers of information. On the other hand, mobile knowledge workers often work on established mobile devices, such as tablets, limiting interaction with those devices to a small input space. This challenge of a constrained input space is intensified in situations when VR knowledge work is situated in cramped environments, such as airplanes and touchdown spaces. In this paper, we investigate the feasibility of interacting jointly between an immersive VR head-mounted display and a tablet within the context of knowledge work. Specifically, we 1) design, implement and study how to interact with information that reaches beyond a single physical touchscreen in VR; 2) design and evaluate a set of interaction concepts; and 3) build example applications and gather user feedback on those applications.Comment: 10 pages, 8 figures, ISMAR 202

    Interacting "Through the Display"

    Get PDF
    The increasing availability of displays at lower costs has led to a proliferation of such in our everyday lives. Additionally, mobile devices are ready to hand and have been proposed as interaction devices for external screens. However, only their input mechanism was taken into account without considering three additional factors in environments hosting several displays: first, a connection needs to be established to the desired target display (modality). Second, screens in the environment may be re-arranged (flexibility). And third, displays may be out of the user’s reach (distance). In our research we aim to overcome the problems resulting from these characteristics. The overall goal is a new interaction model that allows for (1) a non-modal connection mechanism for impromptu use on various displays in the environment, (2) interaction on and across displays in highly flexible environments, and (3) interacting at variable distances. In this work we propose a new interaction model called through the display interaction which enables users to interact with remote content on their personal device in an absolute and direct fashion. To gain a better understanding of the effects of the additional characteristics, we implemented two prototypes each of which investigates a different distance to the target display: LucidDisplay allows users to place their mobile device directly on top of a larger external screen. MobileVue on the other hand enables users to interact with an external screen at a distance. In each of these prototypes we analyzed their effects on the remaining two criteria – namely the modality of the connection mechanism as well as the flexibility of the environment. With the findings gained in this initial phase we designed Shoot & Copy, a system that allows the detection of screens purely based on their visual content. Users aim their personal device’s camera at the target display which then appears in live video shown in the viewfinder. To select an item, users take a picture which is analyzed to determine the targeted region. We further extended this approach to multiple displays by using a centralized component serving as gateway to the display environment. In Tap & Drop we refined this prototype to support real-time feedback. Instead of taking pictures, users can now aim their mobile device at the display resulting and start interacting immediately. In doing so, we broke the rigid sequential interaction of content selection and content manipulation. Both prototypes allow for (1) connections in a non-modal way (i.e., aim at the display and start interacting with it) from the user’s point of view and (2) fully flexible environments (i.e., the mobile device tracks itself with respect to displays in the environment). However, the wide-angle lenses and thus greater field of views of current mobile devices still do not allow for variable distances. In Touch Projector, we overcome this limitation by introducing zooming in combination with temporarily freezing the video image. Based on our extensions to taxonomy of mobile device interaction on external displays, we created a refined model of interacting through the display for mobile use. It enables users to interact impromptu without explicitly establishing a connection to the target display (non-modal). As the mobile device tracks itself with respect to displays in the environment, the model further allows for full flexibility of the environment (i.e., displays can be re-arranged without affecting on the interaction). And above all, users can interact with external displays regardless of their actual size at variable distances without any loss of accuracy.Die steigende Verfügbarkeit von Bildschirmen hat zu deren Verbreitung in unserem Alltag geführt. Ferner sind mobile Geräte immer griffbereit und wurden bereits als Interaktionsgeräte für zusätzliche Bildschirme vorgeschlagen. Es wurden jedoch nur Eingabemechanismen berücksichtigt ohne näher auf drei weitere Faktoren in Umgebungen mit mehreren Bildschirmen einzugehen: (1) Beide Geräte müssen verbunden werden (Modalität). (2) Bildschirme können in solchen Umgebungen umgeordnet werden (Flexibilität). (3) Monitore können außer Reichweite sein (Distanz). Wir streben an, die Probleme, die durch diese Eigenschaften auftreten, zu lösen. Das übergeordnete Ziel ist ein Interaktionsmodell, das einen nicht-modalen Verbindungsaufbau für spontane Verwendung von Bildschirmen in solchen Umgebungen, (2) Interaktion auf und zwischen Bildschirmen in flexiblen Umgebungen, und (3) Interaktionen in variablen Distanzen erlaubt. Wir stellen ein Modell (Interaktion durch den Bildschirm) vor, mit dem Benutzer mit entfernten Inhalten in direkter und absoluter Weise auf ihrem Mobilgerät interagieren können. Um die Effekte der hinzugefügten Charakteristiken besser zu verstehen, haben wir zwei Prototypen für unterschiedliche Distanzen implementiert: LucidDisplay erlaubt Benutzern ihr mobiles Gerät auf einen größeren, sekundären Bildschirm zu legen. Gegensätzlich dazu ermöglicht MobileVue die Interaktion mit einem zusätzlichen Monitor in einer gewissen Entfernung. In beiden Prototypen haben wir dann die Effekte der verbleibenden zwei Kriterien (d.h. Modalität des Verbindungsaufbaus und Flexibilität der Umgebung) analysiert. Mit den in dieser ersten Phase erhaltenen Ergebnissen haben wir Shoot & Copy entworfen. Dieser Prototyp erlaubt die Erkennung von Bildschirmen einzig über deren visuellen Inhalt. Benutzer zeigen mit der Kamera ihres Mobilgeräts auf einen Bildschirm dessen Inhalt dann in Form von Video im Sucher dargestellt wird. Durch die Aufnahme eines Bildes (und der darauf folgenden Analyse) wird Inhalt ausgewählt. Wir haben dieses Konzept zudem auf mehrere Bildschirme erweitert, indem wir eine zentrale Instanz verwendet haben, die als Schnittstelle zur Umgebung agiert. Mit Tap & Drop haben wir den Prototyp verfeinert, um Echtzeit-Feedback zu ermöglichen. Anstelle der Bildaufnahme können Benutzer nun ihr mobiles Gerät auf den Bildschirm richten und sofort interagieren. Dadurch haben wir die strikt sequentielle Interaktion (Inhalt auswählen und Inhalt manipulieren) aufgebrochen. Beide Prototypen erlauben bereits nicht-modale Verbindungsmechanismen in flexiblen Umgebungen. Die in heutigen Mobilgeräten verwendeten Weitwinkel-Objektive erlauben jedoch nach wie vor keine variablen Distanzen. Mit Touch Projector beseitigen wir diese Einschränkung, indem wir Zoomen in Kombination mit einer vorübergehenden Pausierung des Videos im Sucher einfügen. Basierend auf den Erweiterungen der Klassifizierung von Interaktionen mit zusätzlichen Bildschirmen durch mobile Geräte haben wir ein verbessertes Modell (Interaktion durch den Bildschirm) erstellt. Es erlaubt Benutzern spontan zu interagieren, ohne explizit eine Verbindung zum zweiten Bildschirm herstellen zu müssen (nicht-modal). Da das mobile Gerät seinen räumlichen Bezug zu allen Bildschirmen selbst bestimmt, erlaubt unser Modell zusätzlich volle Flexibilität in solchen Umgebungen. Darüber hinaus können Benutzer mit zusätzlichen Bildschirmen (unabhängig von deren Größe) in variablen Entfernungen interagieren

    Light on horizontal interactive surfaces: Input space for tabletop computing

    Get PDF
    In the last 25 years we have witnessed the rise and growth of interactive tabletop research, both in academic and in industrial settings. The rising demand for the digital support of human activities motivated the need to bring computational power to table surfaces. In this article, we review the state of the art of tabletop computing, highlighting core aspects that frame the input space of interactive tabletops: (a) developments in hardware technologies that have caused the proliferation of interactive horizontal surfaces and (b) issues related to new classes of interaction modalities (multitouch, tangible, and touchless). A classification is presented that aims to give a detailed view of the current development of this research area and define opportunities and challenges for novel touch- and gesture-based interactions between the human and the surrounding computational environment. © 2014 ACM.This work has been funded by Integra (Amper Sistemas and CDTI, Spanish Ministry of Science and Innovation) and TIPEx (TIN2010-19859-C03-01) projects and Programa de Becas y Ayudas para la Realización de Estudios Oficiales de Máster y Doctorado en la Universidad Carlos III de Madrid, 2010

    Integrating 2D Mouse Emulation with 3D Manipulation for Visualizations on a Multi-Touch Table

    Get PDF
    We present the Rizzo, a multi-touch virtual mouse that has been designed to provide the fine grained interaction for information visualization on a multi-touch table. Our solution enables touch interaction for existing mouse-based visualizations. Previously, this transition to a multi-touch environment was difficult because the mouse emulation of touch surfaces is often insufficient to provide full information visualization functionality. We present a unified design, combining many Rizzos that have been designed not only to provide mouse capabilities but also to act as zoomable lenses that make precise information access feasible. The Rizzos and the information visualizations all exist within a touch-enabled 3D window management system. Our approach permits touch interaction with both the 3D windowing environment as well as with the contents of the individual windows contained therein. We describe an implementation of our technique that augments the VisLink 3D visualization environment to demonstrate how to enable multi-touch capabilities on all visualizations written with the popular prefuse visualization toolkit.

    Geometry-aware Manipulability Learning, Tracking and Transfer

    Full text link
    Body posture influences human and robots performance in manipulation tasks, as appropriate poses facilitate motion or force exertion along different axes. In robotics, manipulability ellipsoids arise as a powerful descriptor to analyze, control and design the robot dexterity as a function of the articulatory joint configuration. This descriptor can be designed according to different task requirements, such as tracking a desired position or apply a specific force. In this context, this paper presents a novel \emph{manipulability transfer} framework, a method that allows robots to learn and reproduce manipulability ellipsoids from expert demonstrations. The proposed learning scheme is built on a tensor-based formulation of a Gaussian mixture model that takes into account that manipulability ellipsoids lie on the manifold of symmetric positive definite matrices. Learning is coupled with a geometry-aware tracking controller allowing robots to follow a desired profile of manipulability ellipsoids. Extensive evaluations in simulation with redundant manipulators, a robotic hand and humanoids agents, as well as an experiment with two real dual-arm systems validate the feasibility of the approach.Comment: Accepted for publication in the Intl. Journal of Robotics Research (IJRR). Website: https://sites.google.com/view/manipulability. Code: https://github.com/NoemieJaquier/Manipulability. 24 pages, 20 figures, 3 tables, 4 appendice

    Phrasing Bimanual Interaction for Visual Design

    Get PDF
    Architects and other visual thinkers create external representations of their ideas to support early-stage design. They compose visual imagery with sketching to form abstract diagrams as representations. When working with digital media, they apply various visual operations to transform representations, often engaging in complex sequences. This research investigates how to build interactive capabilities to support designers in putting together, that is phrasing, sequences of operations using both hands. In particular, we examine how phrasing interactions with pen and multi-touch input can support modal switching among different visual operations that in many commercial design tools require using menus and tool palettes—techniques originally designed for the mouse, not pen and touch. We develop an interactive bimanual pen+touch diagramming environment and study its use in landscape architecture design studio education. We observe interesting forms of interaction that emerge, and how our bimanual interaction techniques support visual design processes. Based on the needs of architects, we develop LayerFish, a new bimanual technique for layering overlapping content. We conduct a controlled experiment to evaluate its efficacy. We explore the use of wearables to identify which user, and distinguish what hand, is touching to support phrasing together direct-touch interactions on large displays. From design and development of the environment and both field and controlled studies, we derive a set methods, based upon human bimanual specialization theory, for phrasing modal operations through bimanual interactions without menus or tool palettes

    Stereoscopic bimanual interaction for 3D visualization

    Get PDF
    Virtual Environments (VE) are being widely used in various research fields for several decades such as 3D visualization, education, training and games. VEs have the potential to enhance the visualization and act as a general medium for human-computer interaction (HCI). However, limited research has evaluated virtual reality (VR) display technologies, monocular and binocular depth cues, for human depth perception of volumetric (non-polygonal) datasets. In addition, a lack of standardization of three-dimensional (3D) user interfaces (UI) makes it challenging to interact with many VE systems. To address these issues, this dissertation focuses on evaluation of effects of stereoscopic and head-coupled displays on depth judgment of volumetric dataset. It also focuses on evaluation of a two-handed view manipulation techniques which support simultaneous 7 degree-of-freedom (DOF) navigation (x,y,z + yaw,pitch,roll + scale) in a multi-scale virtual environment (MSVE). Furthermore, this dissertation evaluates auto-adjustment of stereo view parameters techniques for stereoscopic fusion problems in a MSVE. Next, this dissertation presents a bimanual, hybrid user interface which combines traditional tracking devices with computer-vision based "natural" 3D inputs for multi-dimensional visualization in a semi-immersive desktop VR system. In conclusion, this dissertation provides a guideline for research design for evaluating UI and interaction techniques

    Barehand Mode Switching in Touch and Mid-Air Interfaces

    Get PDF
    Raskin defines a mode as a distinct setting within an interface where the same user input will produce results different to those it would produce in other settings. Most interfaces have multiple modes in which input is mapped to different actions, and, mode-switching is simply the transition from one mode to another. In touch interfaces, the current mode can change how a single touch is interpreted: for example, it could draw a line, pan the canvas, select a shape, or enter a command. In Virtual Reality (VR), a hand gesture-based 3D modelling application may have different modes for object creation, selection, and transformation. Depending on the mode, the movement of the hand is interpreted differently. However, one of the crucial factors determining the effectiveness of an interface is user productivity. Mode-switching time of different input techniques, either in a touch interface or in a mid-air interface, affects user productivity. Moreover, when touch and mid-air interfaces like VR are combined, making informed decisions pertaining to the mode assignment gets even more complicated. This thesis provides an empirical investigation to characterize the mode switching phenomenon in barehand touch-based and mid-air interfaces. It explores the potential of using these input spaces together for a productivity application in VR. And, it concludes with a step towards defining and evaluating the multi-faceted mode concept, its characteristics and its utility, when designing user interfaces more generally

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this field. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research
    corecore