3,207 research outputs found

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Modeling supply chain interdependent critical infrastructure systems

    Get PDF
    While strategies for emergency response to large-scale disasters have been extensively studied, little has been done to map medium- to long-term strategies capable of restoring supply chain infrastructure systems and reconnecting such systems from a local urban area to national supply chain systems. This is, in part, because no comprehensive, data-driven model of supply chain networks exists. Without such models communities cannot re-establish the level of connectivity required for timely restoration of goods and services. This dissertation builds a model of supply chain interdependent critical infrastructure (SCICI) as a complex adaptive systems problem. It defines model elements, data needs/element, the interdependency of critical infrastructures, and suggests metrics for evaluating success. Previous studies do not consider the problem from a systematic view and therefore their solutions are piecemeal, rather than integrated with respect to both the model elements and geospatial data components. This dissertation details a methodology to understand the complexities of SCICI within a real urban framework (St. Louis, MO). Interdependencies between the infrastructures are mapped to evaluate resiliency and a framework for quantifying interdependence is proposed. In addition, this work details the identification, extraction and integration of the data necessary to model infrastructure systems --Abstract, page iv

    Assessing vulnerability and modelling assistance: using demographic indicators of vulnerability and agent-based modelling to explore emergency flooding relief response

    Get PDF
    Flooding is a significant concern for much of the UK and is recognised as a primary threat by most local councils. Those in society most often deemed vulnerable: the elderly, poor or sick, for example, often see their level of vulnerability increase during hazard events. A greater knowledge of the spatial distribution of vulnerability within communities is key to understanding how a population may be impacted by a hazard event. Vulnerability indices are regularly used – in conjunction with needs assessments and on-the-ground research – to target service provision and justify resource allocation. Past work on measuring and mapping vulnerability has been limited by a focus on income-related indicators, a lack of consideration of accessibility, and the reliance on proprietary data. The Open Source Vulnerability Index (OSVI) encompasses an extensive range of vulnerability indicators supported by the wider literature and expert validation and provides data at a sufficiently fine resolution that can identify vulnerable populations. Findings of the OSVI demonstrate the potential cascading impact of a flood hazard as it impacts an already vulnerable population: exacerbating pre-existing vulnerabilities, limiting capabilities and restricting accessibility and access to key services. The OSVI feeds into an agent-based model (ABM) that explores the capacity of the British Red Cross (BRC) to distribute relief during flood emergencies using strategies based upon the OSVI. A participatory modelling approach was utilised whereby the BRC were included in all aspects of the model development. The major contribution of this work is the novel synthesis of demographics analysis, vulnerability mapping and geospatial simulation. The project contributes to the growing understanding of vulnerability and response management within the NGO sector. It is hoped that the index and model produced will allow responder organisations to run simulations of similar emergency events and adjust strategic response plans accordingly

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of “volunteer mappers”. Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protection

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Coastal management and adaptation: an integrated data-driven approach

    Get PDF
    Coastal regions are some of the most exposed to environmental hazards, yet the coast is the preferred settlement site for a high percentage of the global population, and most major global cities are located on or near the coast. This research adopts a predominantly anthropocentric approach to the analysis of coastal risk and resilience. This centres on the pervasive hazards of coastal flooding and erosion. Coastal management decision-making practices are shown to be reliant on access to current and accurate information. However, constraints have been imposed on information flows between scientists, policy makers and practitioners, due to a lack of awareness and utilisation of available data sources. This research seeks to tackle this issue in evaluating how innovations in the use of data and analytics can be applied to further the application of science within decision-making processes related to coastal risk adaptation. In achieving this aim a range of research methodologies have been employed and the progression of topics covered mark a shift from themes of risk to resilience. The work focuses on a case study region of East Anglia, UK, benefiting from the input of a partner organisation, responsible for the region’s coasts: Coastal Partnership East. An initial review revealed how data can be utilised effectively within coastal decision-making practices, highlighting scope for application of advanced Big Data techniques to the analysis of coastal datasets. The process of risk evaluation has been examined in detail, and the range of possibilities afforded by open source coastal datasets were revealed. Subsequently, open source coastal terrain and bathymetric, point cloud datasets were identified for 14 sites within the case study area. These were then utilised within a practical application of a geomorphological change detection (GCD) method. This revealed how analysis of high spatial and temporal resolution point cloud data can accurately reveal and quantify physical coastal impacts. Additionally, the research reveals how data innovations can facilitate adaptation through insurance; more specifically how the use of empirical evidence in pricing of coastal flood insurance can result in both communication and distribution of risk. The various strands of knowledge generated throughout this study reveal how an extensive range of data types, sources, and advanced forms of analysis, can together allow coastal resilience assessments to be founded on empirical evidence. This research serves to demonstrate how the application of advanced data-driven analytical processes can reduce levels of uncertainty and subjectivity inherent within current coastal environmental management practices. Adoption of methods presented within this research could further the possibilities for sustainable and resilient management of the incredibly valuable environmental resource which is the coast

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    Department of Defense Dictionary of Military and Associated Terms

    Get PDF
    The Joint Publication 1-02, Department of Defense Dictionary of Military and Associated Terms sets forth standard US military and associated terminology to encompass the joint activity of the Armed Forces of the United States. These military and associated terms, together with their definitions, constitute approved Department of Defense (DOD) terminology for general use by all DOD components

    Path planning for first responders in the presence of moving obstacles

    Get PDF
    Navigation services have gained much importance for all kinds of human activities ranging from tourist navigation to support of rescue teams in disaster management. However, despite the considerable amount of route guidance research that has been performed, many issues that are related to navigation for first responders still need to be addressed. During disasters, emergencies can result in different types of moving obstacles (e.g., fires, plumes, floods), which make some parts of the road network temporarily unavailable. After such incidents occur, responders have to go to different destinations to perform their tasks in the environment affected by the disaster. Therefore they need a path planner that is capable of dealing with such moving obstacles, as well as generating and coordinating their routes quickly and efficiently. During the past decades, more and more hazard simulations, which can modify the models with incorporation of dynamic data from the field, have been developed. These hazard simulations use methods such as data assimilation, stochastic estimation, and adaptive measurement techniques, and are able to generate more reliable results of hazards. This would allow the hazard simulation models to provide valuable information regarding the state of road networks affected by hazards, which supports path planning for first responders among the moving obstacles. The objective of this research is to develop an integrated navigation system for first responders in the presence of moving obstacles. Such system should be able to navigate one or more responders to one or multiple destinations avoiding the moving obstacles, using the predicted information of the moving obstacles generated from by hazard simulations. In this dissertation, the objective we have is expressed as the following research question: How do we safely and efficiently navigate one or more first responders to one or more destinations avoiding moving obstacles? To address the above research questions, this research has been conducted using the following outline: 1). literature review; 2). conceptual design and analysis; 3). implementation of the prototype; and 4). assessment of the prototype and adaption. We investigated previous research related to navigation in disasters, and designed an integrated navigation system architecture, assisting responders in spatial data storage, processing and analysis.Within this architecture, we employ hazard models to provide the predicted information about the obstacles, and select a geo-database to store the data needed for emergency navigation. Throughout the development of the prototype navigation system, we have proposed: a taxonomy of navigation among obstacles, which categorizes navigation cases on basis of type and multiplicity of first responders, destinations, and obstacles; a multi-agent system, which supports information collection from hazard simulations, spatio-temporal data processing and analysis, connection with a geo-database, and route generation in dynamic environments affected by disasters; data models, which structure the information required for finding paths among moving obstacles, capturing both static information, such as the type of the response team, the topology of the road network, and dynamic information, such as changing availabilities of roads during disasters, the uncertainty of the moving obstacles generated from hazard simulations, and the position of the vehicle; path planning algorithms, which generate routes for one or more responders in the presence of moving obstacles. Using the speed of vehicles, departure time, and the predicted information about the state of the road network, etc., three versions (I, II, and III) of Moving Obstacle Avoiding A* (MOAAStar) algorithms are developed: 1). MOAAstar– I/Non-waiting, which supports path planning in the case of forest fires; 2). MOAAstar–II/Waiting, which introduces waiting options to avoid moving obstacles like plumes; 3). MOAAstar–III/Uncertainty, which can handle the uncertainty in predictions of moving obstacles and incorporate the profile of responders into the routing. We have applied the developed prototype navigation system to different navigation cases with moving obstacles. The main conclusions drawn from our applications are summarized as follows: In the proposed taxonomy, we have identified 16 navigation cases that could occur in disaster response and need to be investigated. In addressing these navigation problems, it would be quite useful to employ computer simulations and models, which can make reliable predicted information about responders, the targets, and obstacles, in finding safe routes for the responders. The approach we provide is general and not limited to the cases of plumes and fires. In our data model, the data about the movement of hazards is represented as moving polygons. This allows the data model to be easily adjusted to merge and organize information from models of different types of disasters. For example, the areas that are affected by floods can also be represented as moving polygons. To facilitate the route calculation, not only the data of obstacles but also the information about the state of road networks affected by obstacles need to be structured and stored in the database. In planning routes for responders, the routing algorithms should incorporate the dynamic data of obstacles to be able to avoid the hazards. Besides, other factors, such as the operation time of tasks, the required arrival time, and departure time, also need to be considered to achieve the objectives in a rescue process, e.g., to minimize the delays caused by the moving obstacles. The profile of responders is quite important for generation of feasible routes for a specific disaster situation. The responders may have different protective equipment that allows them to pass through different types of moving obstacles, and thus can have different classification of risk levels to define the state of the road network. By taking into account the profile of the responders, the navigation system can propose customized and safe routes to them, which would facilitate their disaster response processes. On the basis of our findings, we suggest the following topics for future work: As presented Wang and Zlatanova (2013c), there are still a couple of navigation cases that need to be addressed, especially the ones that involve dynamic destinations. More algorithms would be needed to solve these navigation problems. Besides, some extreme cases (e.g., the obstacle covers the target point during the course of an incident) also need to be investigated. Using standard Web services, an Android navigation application, which can provide navigation services in the environment affected by hazards, needs to be developed and tested in both the daily practice and real disasters. In this application, a user interface with various styling options should also be designed for different situations, e.g., waiting and moving, day and night, and urgent and non-urgent. Because the communication infrastructure may not be available or work properly during a disaster response, a decentralized method is needed to allow different users to negotiate with each other and to make local agreements on the distribution of tasks in case there is no support from the central planning system. Another type of multi-agent system would be needed to handle this situation. Introduce variable traveling speed into the re-routing process. The vehicle speed plays an important role in generation of routes avoiding moving obstacle, and can be influenced by many factors, such as the obstacles, the type of vehicles, traffic conditions, and the type of roads. Therefore, it would be needed to investigate how to derive the current and future speed from trajectories of vehicles. Apply the system to aid navigation in various types of natural disasters, using different hazard simulation models (e.g., flood model). More types of agents would be needed and integrated into the system to handle heterogeneous data from these models. Extensions of the data model are also required to meet a wider range of informational needs when multiple disasters occur simultaneously
    • …
    corecore