167 research outputs found

    Modeling and Analysis of Channel Holding Time and Handoff Rate for Packet Sessions in All-IP Cellular Networks

    Get PDF
    It is essential to model channel holding time (CHT), cell residence time (CRT), and handoff rate for performance analysis and algorithm evaluation in mobile cellular networks. The problem has been extensively studied in the past for circuit-switched (CS) cellular networks. However, little research has been done on packet-switched (PS) cellular networks. Unlike that a call occupies a dedicated channel during its whole lifetime in CS networks, an active session in PS networks occupies and releases channels iteratively due to discontinuous reception (DRX) mechanism. In this paper, we investigate the key quantities in PS cellular networks. We present a set of comprehensive new models to characterize the quantities and their relationship in PS networks. The models shed light on the relationship between CHT and CRT and handoff rate. The analytical results enable wide applicability in various scenarios and therefore have important theoretical significance. Moreover, the analytical results provide a quick way to evaluate traffic performance and system design in PS cellular networks without wide deployment, which can save cost and time

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    Efficient resource allocation and call admission control in high capacity wireless networks

    Get PDF
    Resource Allocation (RA) and Call Admission Control (CAC) in wireless networks are processes that control the allocation of the limited radio resources to mobile stations (MS) in order to maximize the utilization efficiency of radio resources and guarantee the Quality of Service (QoS) requirements of mobile users. In this dissertation, several distributed, adaptive and efficient RA/CAC schemes are proposed and analyzed, in order to improve the system utilization while maintaining the required QoS. Since the most salient feature of the mobile wireless network is that users are moving, a Mobility Based Channel Reservation (MBCR) scheme is proposed which takes the user mobility into consideration. The MBCR scheme is further developed into PMBBR scheme by using the user location information in the reservation making process. Through traffic composition analysis, the commonly used assumption is challenged in this dissertation, and a New Call Bounding (NCB) scheme, which uses the number of channels that are currently occupied by new calls as a decision variable for the CAC, is proposed. This dissertation also investigates the pricing as another dimension for RA/CAC. It is proven that for a given wireless network there exists a new call arrival rate which can maximize the total utility of users, while maintaining the required QoS. Based on this conclusion, an integrated pricing and CAC scheme is proposed to alleviate the system congestion

    Resource allocation in cellular CDMA systems with cross- layer Optimization

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Stochastic Geometry approach towards Green Communications in 5G

    Get PDF
    In this dissertation, we investigate two main research directions towards net- work efficiency and green communications in heterogeneous cellular networks (HetNets) as a promising network structure for the fifth generation of mobile systems. In order to analyze the networks, we use a powerful mathematical tool, named stochastic geometry. In our research, first we study the performance of MIMO technology in single-tier and two-tier HetNets. In this work, we apply a more realistic network model in which the correlation between tiers is taken into account. Comparing the obtained results with the commonly used model shows performance enhancement and greater efficiencies in cellular networks. As the second part of our research, we apply two Cell Zooming (CZ) techniques to HetNets. With focus on green communications, we present a K−tier HetNet in which BSs are only powered by energy har- vesting. Despite the uncertain nature of energy arrivals, combining two CZ techniques, namely telescopic and ON/OFF scenarios, enables us to achieve higher network performance in terms of the coverage and blocking probabilities while reducing the total power consumption and increasing the energy and spectral efficiencies

    Mobile Network Data Analytics for Intelligent Transportation Systems

    Get PDF
    In this dissertation, we explore how the interplay between transportation and mobile networks manifests itself in mobile network billing and signaling data, and we show how to use this data to estimate different transportation supply and demand models. To perform the necessary simulation studies for this dissertation, we present a simula- tion scenario of Luxembourg, which allows the simulation of vehicular Long-Term Evolu- tion (LTE) connectivity with realistic mobility. We first focus on modeling travel time from Cell Dwell Time (CDT), and show – on a synthetic data set– that we can achieve a prediction Mean Absolute Percentage Error (MAPE) below 12%. We also encounter proportionality between the square of the mean CDT and the number of handovers in the system, which we confirmed in the aforementioned simulation scenario. This motivated our later studies of traffic state models generated from mobile network data. We also consider mobile network data for supporting synthetic population generation and demand estimation. In a study on Call Detail Records (CDR) data from Senegal, we estimate CDT distributions to allow generating the duration of user activities, and validate them at a large scale against a data set from China. In a different study, we show how mobile network signaling data can be used for initializing the seed Origin- Destination (O-D) matrix in demand estimation schemes, and show that it increases the rate of convergence. Finally, we address the traffic state estimation problem, by showing how handovers can be used as a proxy metric for flows in the underlying urban road network. Using a traffic flow theory model, we show that clusters of mobile network cells behave characteristically, and with this model we reach a MAPE of 11.1% with respect to floating-car data as ground truth. The presented model can be used in regions without traffic counting infrastructure, or complement existing traffic state estimation systems

    Proceedings of the Fifth International Mobile Satellite Conference 1997

    Get PDF
    Satellite-based mobile communications systems provide voice and data communications to users over a vast geographic area. The users may communicate via mobile or hand-held terminals, which may also provide access to terrestrial communications services. While previous International Mobile Satellite Conferences have concentrated on technical advances and the increasing worldwide commercial activities, this conference focuses on the next generation of mobile satellite services. The approximately 80 papers included here cover sessions in the following areas: networking and protocols; code division multiple access technologies; demand, economics and technology issues; current and planned systems; propagation; terminal technology; modulation and coding advances; spacecraft technology; advanced systems; and applications and experiments

    Impact of Mobility and Wireless Channel on the Performance of Wireless Networks

    Get PDF
    This thesis studies the impact of mobility and wireless channel characteristics, i. e. , variability and high bit-error-rate, on the performance of integrated voice and data wireless systems from network, transport protocol and application perspectives. From the network perspective, we study the impact of user mobility on radio resource allocation. The goal is to design resource allocation mechanisms that provide seamless mobility for voice calls while being fair to data calls. In particular, we develop a distributed admission control for a general integrated voice and data wireless system. We model the number of active calls in a cell of the network as a Gaussian process with time-dependent mean and variance. The Gaussian model is updated periodically using the information obtained from neighboring cells about their load conditions. We show that the proposed scheme guarantees a prespecified dropping probability for voice calls while being fair to data calls. Furthermore, the scheme is stable, insensitive to user mobility process and robust to load variations. From the transport protocol perspective, we study the impact of wireless channel variations and rate scheduling on the performance of elastic data traffic carried by TCP. We explore cross-layer optimization of the rate adaptation feature of cellular networks to optimize TCP throughput. We propose a TCP-aware scheduler that switches between two rates as a function of TCP sending rate. We develop a fluid model of the steady-state TCP behavior for such a system and derive analytical expressions for TCP throughput that explicitly account for rate variability as well as the dependency between the scheduler and TCP. The model is used to choose RF layer parameters that, in conjunction with the TCP-aware scheduler, improve long-term TCP throughput in wireless networks. A distinctive feature of our model is its ability to capture variability of round-trip-time, channel rate and packet error probability inherent to wireless communications. From the application perspective, we study the performance of wireless messaging systems. Two popular wireless applications, the short messaging service and multimedia messaging service are considered. We develop a mathematical model to evaluate the performance of these systems taking into consideration the fact that each message tolerates only a limited amount of waiting time in the system. Using the model, closed-form expressions for critical performance parameters such as message loss, message delay and expiry probability are derived. Furthermore, a simple algorithm is presented to find the optimal temporary storage size that minimizes message delay for a given set of system parameters
    corecore