656 research outputs found

    FPGA Implementation of Spectral Subtraction for In-Car Speech Enhancement and Recognition

    Get PDF
    The use of speech recognition in noisy environments requires the use of speech enhancement algorithms in order to improve recognition performance. Deploying these enhancement techniques requires significant engineering to ensure algorithms are realisable in electronic hardware. This paper describes the design decisions and process to port the popular spectral subtraction algorithm to a Virtex-4 field-programmable gate array (FPGA) device. Resource analysis shows the final design uses only 13% of the total available FPGA resources. Waveforms and spectrograms presented support the validity of the proposed FPGA design

    A biophysically accurate floating point somatic neuroprocessor

    Get PDF

    Design and FPGA Implementation of CORDIC-based 8-point 1D DCT Processor

    Get PDF
    CORDIC or CO-ordinate Rotation DIgital Computer is a fast, simple, efficient and powerful algorithm used for diverse Digital Signal Processing applications. Primarily developed for real-time airborne computations, it uses a unique computing technique which is especially suitable for solving the trigonometric relationships involved in plane co-ordinate rotation and conversion from rectangular to polar form. It comprises a special serial arithmetic unit having three shift registers, three adders/subtractors, Look-Up table and special interconnections. Using a prescribed sequence of conditional additions or subtractions the CORDIC arithmetic unit can be controlled to solve either of the following equations: Y’=K (Ycos λ+ Xsin λ) X’=K (Xcos λ - Ysin λ); where K is a constant In this project: • A CORDIC-based processor for sine/cosine calculation was designed using VHDL programming in Xilinx ISE 10.1. The CORDIC module was tested for its functionality and correctness by test-bench analysis. Subsequently, FPGA implementation of the CORDIC core followed by ChipScopePro analysis of the output logic waveforms was performed. • Using this CORDIC core a DCT processor was designed to calculate the 8-point 1D DCT. The functionality and operational correctness of this processor was tested, first on the test-bench and then via ChipScopePro analysis, post FPGA implementation. The output obtained in both the cases was compared with the actual values to test for consistency and the percentage of accuracy was established. Power consumption and FPGA resource utilization were observed. The results obtained were discussed

    Implementation of the Trigonometric LMS Algorithm using Original Cordic Rotation

    Full text link
    The LMS algorithm is one of the most successful adaptive filtering algorithms. It uses the instantaneous value of the square of the error signal as an estimate of the mean-square error (MSE). The LMS algorithm changes (adapts) the filter tap weights so that the error signal is minimized in the mean square sense. In Trigonometric LMS (TLMS) and Hyperbolic LMS (HLMS), two new versions of LMS algorithms, same formulations are performed as in the LMS algorithm with the exception that filter tap weights are now expressed using trigonometric and hyperbolic formulations, in cases for TLMS and HLMS respectively. Hence appears the CORDIC algorithm as it can efficiently perform trigonometric, hyperbolic, linear and logarithmic functions. While hardware-efficient algorithms often exist, the dominance of the software systems has kept those algorithms out of the spotlight. Among these hardware- efficient algorithms, CORDIC is an iterative solution for trigonometric and other transcendental functions. Former researches worked on CORDIC algorithm to observe the convergence behavior of Trigonometric LMS (TLMS) algorithm and obtained a satisfactory result in the context of convergence performance of TLMS algorithm. But revious researches directly used the CORDIC block output in their simulation ignoring the internal step-by-step rotations of the CORDIC processor. This gives rise to a need for verification of the convergence performance of the TLMS algorithm to investigate if it actually performs satisfactorily if implemented with step-by-step CORDIC rotation. This research work has done this job. It focuses on the internal operations of the CORDIC hardware, implements the Trigonometric LMS (TLMS) and Hyperbolic LMS (HLMS) algorithms using actual CORDIC rotations. The obtained simulation results are highly satisfactory and also it shows that convergence behavior of HLMS is much better than TLMS.Comment: 12 pages, 5 figures, 1 table. Published in IJCNC; http://airccse.org/journal/cnc/0710ijcnc08.pdf, http://airccse.org/journal/ijc2010.htm

    A CORDIC based QR Decomposition Technique for MIMO Detection

    Get PDF
    CORDIC based improved real and complex QR Decomposition (QRD) for channel pre-processing operations in (Multiple-Input Multiple-Output) MIMO detectors are presented in this paper. The proposed design utilizes pipelining and parallel processing techniques and reduces the latency and hardware complexity of the module respectively. Computational complexity analysis report shows the superiority of our module by 16% compared to literature. The implementation results reveal that the proposed QRD takes shorter latency compared to literature. The power consumption of 2x2 real channel matrix and 2x2 complex channel matrix was found to be 12mW and 44mW respectively on the state-of-the-art Xilinx Virtex 5 FPGA

    Model-based design for selecting fingerprint recognition algorithms for embedded systems

    Get PDF
    Most of contributions for biometric recognition solutions (and specifically for fingerprint recognition) are implemented in software on PC or similar platforms. However, the wide spread of embedded systems means that fingerprint embedded systems will be progressively demanded and, hence, hardware dedicated solutions are needed to satisfy their constraints. CAD tools from Matlab-Simulink ease hardware design for embedded systems because automatize the design process from high-level descriptions to device implementation. Verification of results is set at different abstraction levels (high- level description, hardware code simulation, and device implementation). This paper shows how a design flow based on models facilitates the selection of algorithms for fingerprint embedded systems. In particular, the search of a solution for directional image extraction suitable for its application to singular point extraction is detailed. Implementation results in terms of area occupation and timing are presented for different Xilinx FPGAs.Ministerio de Economía y Competitividad TEC2011-24319Junta de Andalucía P08-TIC-03674Comunidad Europea FP7-INFSO-ICT-24885

    Parametrizable Architecture for Function Recursive Evaluation

    Get PDF
    Paper submitted to the XVIII Conference on Design of Circuits and Integrated Systems (DCIS), Ciudad Real, España, 2003.This paper presents a function evaluation method developed under the scope of recursive expression of function convolution. This approach is based on a unique parametrizable formula capable of providing function points by successive iteration. When tackling design level, it also shows suitable for developing architectural schemes capable of dealing with different speed and precision issues. An architecture for reconfigurable FPGA based in serial distributed arithmetic implements the design for fast prototyping. The case of combined trigonometric functions involved in rotation is analyzed under this scope. Compared with others methods, our proposal offers a good balance between speed and precision
    corecore