7,108 research outputs found

    Airborne and Terrestrial Laser Scanning Data for the Assessment of Standing and Lying Deadwood: Current Situation and New Perspectives

    Get PDF
    LiDAR technology is finding uses in the forest sector, not only for surveys in producing forests but also as a tool to gain a deeper understanding of the importance of the three-dimensional component of forest environments. Developments of platforms and sensors in the last decades have highlighted the capacity of this technology to catch relevant details, even at finer scales. This drives its usage towards more ecological topics and applications for forest management. In recent years, nature protection policies have been focusing on deadwood as a key element for the health of forest ecosystems and wide-scale assessments are necessary for the planning process on a landscape scale. Initial studies showed promising results in the identification of bigger deadwood components (e.g., snags, logs, stumps), employing data not specifically collected for the purpose. Nevertheless, many efforts should still be made to transfer the available methodologies to an operational level. Newly available platforms (e.g., Mobile Laser Scanner) and sensors (e.g., Multispectral Laser Scanner) might provide new opportunities for this field of study in the near future

    Assessing satellite-derived land product quality for earth system science applications: results from the ceos lpv sub-group

    Get PDF
    The value of satellite derived land products for science applications and research is dependent upon the known accuracy of the data. CEOS (Committee on Earth Observation Satellites), the space arm of the Group on Earth Observations (GEO), plays a key role in coordinating the land product validation process. The Land Product Validation (LPV) sub-group of the CEOS Working Group on Calibration and Validation (WGCV) aims to address the challenges associated with the validation of global land products. This paper provides an overview of LPV sub-group focus area activities, which cover seven terrestrial Essential Climate Variables (ECVs). The contribution will enhance coordination of the scientific needs of the Earth system communities with global LPV activities

    Evaluation of a Bayesian Algorithm to Detect Burned Areas in the Canary Islands’ Dry Woodlands and Forests Ecoregion Using MODIS Data

    Get PDF
    Burned Area (BA) is deemed as a primary variable to understand the Earth’s climate system. Satellite remote sensing data have allowed for the development of various burned area detection algorithms that have been globally applied to and assessed in diverse ecosystems, ranging from tropical to boreal. In this paper, we present a Bayesian algorithm (BY-MODIS) that detects burned areas in a time series of Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2002 to 2012 of the Canary Islands’ dry woodlands and forests ecoregion (Spain). Based on daily image products MODIS, MOD09GQ (250 m), and MOD11A1 (1 km), the surface spectral reflectance and the land surface temperature, respectively, 10 day composites were built using the maximum temperature criterion. Variables used in BY-MODIS were the Global Environment Monitoring Index (GEMI) and Burn Boreal Forest Index (BBFI), alongside the NIR spectral band, all of which refer to the previous year and the year the fire took place in. Reference polygons for the 14 fires exceeding 100 hectares and identified within the period under analysis were developed using both post-fire LANDSAT images and official information from the forest fires national database by the Ministry of Agriculture and Fisheries, Food and Environment of Spain (MAPAMA). The results obtained by BY-MODIS can be compared to those by official burned area products, MCD45A1 and MCD64A1. Despite that the best overall results correspond to MCD64A1, BY-MODIS proved to be an alternative for burned area mapping in the Canary Islands, a region with a great topographic complexity and diverse types of ecosystems. The total burned area detected by the BY-MODIS classifier was 64.9% of the MAPAMA reference data, and 78.6% according to data obtained from the LANDSAT images, with the lowest average commission error (11%) out of the three products and a correlation (R2) of 0.82. The Bayesian algorithm—originally developed to detect burned areas in North American boreal forests using AVHRR archival data Long-Term Data Record—can be successfully applied to a lower latitude forest ecosystem totally different from the boreal ecosystem and using daily time series of satellite images from MODIS with a 250 m spatial resolution, as long as a set of training areas adequately characterising the dynamics of the forest canopy affected by the fire is defined

    Deep Learning Methods for Remote Sensing

    Get PDF
    Remote sensing is a field where important physical characteristics of an area are exacted using emitted radiation generally captured by satellite cameras, sensors onboard aerial vehicles, etc. Captured data help researchers develop solutions to sense and detect various characteristics such as forest fires, flooding, changes in urban areas, crop diseases, soil moisture, etc. The recent impressive progress in artificial intelligence (AI) and deep learning has sparked innovations in technologies, algorithms, and approaches and led to results that were unachievable until recently in multiple areas, among them remote sensing. This book consists of sixteen peer-reviewed papers covering new advances in the use of AI for remote sensing
    • …
    corecore