143 research outputs found

    Segmentation of 3D meshes combining the artificial neural network classifier and the spectral clustering

    Get PDF
    3D mesh segmentation has become an essential step in many applications in 3D shape analysis. In this paper, a new segmentation method is proposed based on a learning approach using the artificial neural networks classifier and the spectral clustering for segmentation. Firstly, a training step is done using the artificial neural network trained on existing segmentation, taken from the ground truth segmentation (done by humane operators) available in the benchmark proposed by Chen et al. to extract the candidate boundaries of a given 3D-model based on a set of geometric criteria. Then, we use this resulted knowledge to construct a new connectivity of the mesh and use the spectral clustering method to segment the 3D mesh into significant parts. Our approach was evaluated using different evaluation metrics. The experiments confirm that the proposed method yields significantly good results and outperforms some of the competitive segmentation methods in the literature.We would first like to thank Xiaobai Chen et al. for providing the Princeton segmentation benchmark (http://segeval.cs.princeton.edu/). We also would like to thank Liu and Hao Zhang et al. for helping us by providing the binary of the AEI and helping us to evaluate our method

    Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa.

    Get PDF
    BACKGROUND: Brain morphometry is extensively used in cross-sectional studies. However, the difference in the estimated values of the morphometric measures between patients and healthy subjects may be small and hence overshadowed by the scanner-related variability, especially with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner. METHODS: We assessed the variability and reliability for the grey matter, white matter, cerebrospinal fluid and cerebral hemisphere volumes as well as the global sulcal index, sulcal surface and mean geodesic depth using Brainvisa. We used datasets obtained across multiple MR scanners at 1.5 T and 3 T from the same groups of 13 and 11 healthy volunteers, respectively. For each morphometric measure, we conducted ANOVA analysis and verified whether the estimated values were significantly different across different scanners or different sessions of the same scanner. The between-centre and between-visit reliabilities were estimated from their contribution to the total variance, using a random-effects ANOVA model. To estimate the main processes responsible for low reliability, the results of brain segmentation were compared to those obtained using FAST within FSL. RESULTS: In a considerable number of cases, the main effects of both centre and visit factors were found to be significant. Moreover, both between-centre and between-visit reliabilities ranged from poor to excellent for most morphometric measures. A comparison between segmentation using Brainvisa and FAST revealed that FAST improved the reliabilities for most cases, suggesting that morphometry could benefit from improving the bias correction. However, the results were still significantly different across different scanners or different visits. CONCLUSIONS: Our results confirm that for morphometry analysis with the current version of Brainvisa using data from multicentre or longitudinal studies, the scanner-related variability must be taken into account and where possible should be corrected for. We also suggest providing some flexibility to Brainvisa for a step-by-step analysis of the robustness of this package in terms of reproducibility of the results by allowing the bias corrected images to be imported from other packages and bias correction step be skipped, for example.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    A novel approach for partial shape matching and similarity based on data envelopment analysis

    Get PDF
    Due to the growing number of 3D objects in digital libraries, the task of searching and browsing models in an extensive 3D database has been the focus of considerable research in the area. In the last decade, several approaches to retrieve 3D models based on shape similarity have been proposed. The majority of the existing methods addresses the problem of similarity between objects as a global matching problem. Consequently, most of these techniques do not support a part of the object as a query, in addition to their poor performance for classes with globally non-similar shape models and also for articulated objects. The partial matching technique seems to be a suitable solution to these problems. In this paper, we address the problem of shape matching and retrieval. We propose a new approach based on partial matching in which each 3D object is segmented into its constituent parts, and shape descriptors are computed from these elements to compare similarities. Several experiments investigated that our technique enables fast computing for content-based 3D shape retrieval and significantly improves the results of our method based on Data Envelopment Analysis descriptor for global matching

    A novel diffusion tensor imaging-based computer-aided diagnostic system for early diagnosis of autism.

    Get PDF
    Autism spectrum disorders (ASDs) denote a significant growing public health concern. Currently, one in 68 children has been diagnosed with ASDs in the United States, and most children are diagnosed after the age of four, despite the fact that ASDs can be identified as early as age two. The ultimate goal of this thesis is to develop a computer-aided diagnosis (CAD) system for the accurate and early diagnosis of ASDs using diffusion tensor imaging (DTI). This CAD system consists of three main steps. First, the brain tissues are segmented based on three image descriptors: a visual appearance model that has the ability to model a large dimensional feature space, a shape model that is adapted during the segmentation process using first- and second-order visual appearance features, and a spatially invariant second-order homogeneity descriptor. Secondly, discriminatory features are extracted from the segmented brains. Cortex shape variability is assessed using shape construction methods, and white matter integrity is further examined through connectivity analysis. Finally, the diagnostic capabilities of these extracted features are investigated. The accuracy of the presented CAD system has been tested on 25 infants with a high risk of developing ASDs. The preliminary diagnostic results are promising in identifying autistic from control patients

    Application of Advanced MRI to Fetal Medicine and Surgery

    Get PDF
    Robust imaging is essential for comprehensive preoperative evaluation, prognostication, and surgical planning in the field of fetal medicine and surgery. This is a challenging task given the small fetal size and increased fetal and maternal motion which affect MRI spatial resolution. This thesis explores the clinical applicability of post-acquisition processing using MRI advances such as super-resolution reconstruction (SRR) to generate optimal 3D isotropic volumes of anatomical structures by mitigating unpredictable fetal and maternal motion artefact. It paves the way for automated robust and accurate rapid segmentation of the fetal brain. This enables a hierarchical analysis of volume, followed by a local surface-based shape analysis (joint spectral matching) using mathematical markers (curvedness, shape index) that infer gyrification. This allows for more precise, quantitative measurements, and calculation of longitudinal correspondences of cortical brain development. I explore the potential of these MRI advances in three clinical settings: fetal brain development in the context of fetal surgery for spina bifida, airway assessment in fetal tracheolaryngeal obstruction, and the placental-myometrial-bladder interface in placenta accreta spectrum (PAS). For the fetal brain, MRI advances demonstrated an understanding of the impact of intervention on cortical development which may improve fetal candidate selection, neurocognitive prognostication, and parental counselling. This is of critical importance given that spina bifida fetal surgery is now a clinical reality and is routinely being performed globally. For the fetal trachea, SRR can provide improved anatomical information to better select those pregnancies where an EXIT procedure is required to enable the fetal airway to be secured in a timely manner. This would improve maternal and fetal morbidity outcomes associated with haemorrhage and hypoxic brain injury. Similarly, in PAS, SRR may assist surgical planning by providing enhanced anatomical assessment and prediction for adverse peri-operative maternal outcome such as bladder injury, catastrophic obstetric haemorrhage and maternal death

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Development of cortical shape in the human brain from 6 to 24months of age via a novel measure of shape complexity

    Get PDF
    The quantification of local surface morphology in the human cortex is important for examining population differences as well as developmental changes in neurodegenerative or neurodevelopmental disorders. We propose a novel cortical shape measure, referred to as the ‘shape complexity index’ (SCI), that represents localized shape complexity as the difference between the observed distributions of local surface topology, as quantified by the shape index (SI) measure, to its best fitting simple topological model within a given neighborhood. We apply a relatively small, adaptive geodesic kernel to calculate the SCI. Due to the small size of the kernel, the proposed SCI measure captures fine differences of cortical shape. With this novel cortical feature, we aim to capture comparatively small local surface changes that capture a) the widening versus deepening of sulcal and gyral regions, as well as b) the emergence and development of secondary and tertiary sulci. Current cortical shape measures, such as the gyrification index (GI) or intrinsic curvature measures, investigate the cortical surface at a different scale and are less well suited to capture these particular cortical surface changes. In our experiments, the proposed SCI demonstrates higher complexity in the gyral/sulcal wall regions, lower complexity in wider gyral ridges and lowest complexity in wider sulcal fundus regions. In early postnatal brain development, our experiments show that SCI reveals a pattern of increased cortical shape complexity with age, as well as sexual dimorphisms in the insula, middle cingulate, parieto-occipital sulcal and Broca's regions. Overall, sex differences were greatest at 6 months of age and were reduced at 24 months, with the difference pattern switching from higher complexity in males at 6 months to higher complexity in females at 24months. This is the first study of longitudinal, cortical complexity maturation and sex differences, in the early postnatal period from 6 to 24 months of age with fine scale, cortical shape measures. These results provide information that complement previous studies of gyrification index in early brain development
    corecore