113 research outputs found

    Cooperative Localization Enhancement through GNSS Raw Data in Vehicular Networks

    Get PDF
    The evolution and integration of communication networks and positioning technologies are evolving at a fast pace in the framework of vehicular systems. The mutual dependency of such two capabilities can enable several new cooperative paradigms, whose adoption is however slowed down by the lack of suitable open protocols, especially related to the positioning and navigation domain. In light of this, the paper introduces a novel vehicular message type, namely the Cooperative Enhancement Message (CEM), and an associated open protocol to enable the sharing of Global Navigation Satellite Systems (GNSS) raw measurements among connected vehicles. The proposed CEM aims at extending existent approaches such as Cooperative Awareness Messages (CAM) and Collective Perception Messages (CPM) by complementing their paradigms with a cooperative enhancement of the localization accuracy, precision, and integrity proposed by state-of-the-art solutions. Besides the definition of CEMs and a related protocol, a validation of the approach is proposed through a novel simulation framework. A preliminary analysis of the network performance is presented in the case where CEM and CAM transmissions coexist and are concurrently used to support cooperative vehicle applications

    Mobility and Aging: Older Drivers’ Visual Searching, Lane Keeping and Coordination

    Get PDF
    This thesis examined older drivers’ mobility and behaviour through comprehensive measurements of driver-vehicle-environment interaction and investigated the associations between driving behaviour and cognitive functions. Data were collected and analysed for 50 older drivers using eye tracking, GNSS tracking, and GIS. Results showed that poor selective attention, spatial ability and executive function in older drivers adversely affect lane keeping, visual search and coordination. Visual-motor coordination measure is sensitive and effective for driving assessment in older drivers

    Multipath Propagation, Mitigation and Monitoring in the Light of Galileo and the Modernized GPS

    Get PDF
    Among the numerous potential sources of GNSS signal degradation, multipath takes on a prominent position. Unlike other errors like ionospheric or tropospheric path delays which can be modeled or significantly reduced by differential techniques, multipath influences cannot be mitigated by such approaches. Although a lot of multipath mitigation techniques have been proposed and developed in the past among them many receiver internal approaches using special signal processing algorithms multipath (especially multipath with small geometric path delays) still remains a major error source. This is why multipath has been a major design driver for the definition of the Galileo signal structure carried out in the past years and the subsequent signal optimization activities. This thesis tries to provide a broad and comprehensive insight into various aspects of multipath propagation, mitigation and monitoring (without claiming to be exhaustive). It contains an overview of the most important aspects of multipath propagation, including the discussion of different types of multipath signals (e.g. specular vs. diffuse multipath, satellite vs. receiver multipath or hardware-induced multipath), typical characteristics such as periodic signal variations whose frequency depends on the satellite-antenna-reflector geometry and the impact on the signal tracking process within a GNSS receiver. A large part of this thesis is dedicated to aspects of multipath mitigation, first providing a summary of the most common multipath mitigation techniques with a special focus on receiver-internal approaches such as the narrow correlation technique, double-delta correlator implementations, the Early-Late Slope (ELS) technique or Early/Early tracking implementations. However, other mitigation approaches such as using arrays of closely spaced antennas or multipath-limiting antennas are discussed as well. Some of these techniques are used for subsequent multipath performance analyses considering signals of the (modernized) GPS and Galileo. These analyses base on a new methodology to estimate typical and meaningful multipath errors making use of multipath error envelopes that are scaled in a suitable way to account for different multipath environments. It will be shown that typical (mean) multipath errors can be derived from these scaled envelopes by computation of the envelopes running average and that these mean multipath errors are of the same order as multipath errors obtained from complex statistical channel models. Another part of this thesis covers various aspects of multipath detection and monitoring. First, current techniques for multipath detection and monitoring are described and discussed with respect to their benefits and drawbacks or their real-time capability. Among the considered approaches are techniques like code minus carrier monitoring, SNR monitoring, the use of differenced observations or spectral and wavelet analysis. Following this introductory overview, a completely new approach for real-time multipath monitoring by processing multi-correlator observations will be introduced. Previously being used primarily for the detection of Evil Waveforms (signal failures that originate from a malfunction of the satellites signal generation and transmission hardware), the same basic observations (linear combinations of correlator outputs) can be used for the development of a multi-correlator-based real-time multipath monitoring system. The objective is to provide the user with instant information whether or not a signal is affected by multipath. The proposed monitoring scheme has been implemented in the form of a Matlab-based software called RTMM (Real-Time Multipath Monitor) which has been used to verify the monitoring approach and to determine its sensitivity.Die Qualität eines Satellitensignals wird durch eine Vielzahl potenzieller Fehlerquellen negativ beeinflusst. Neben atmosphärischen Einflüssen tragen Mehrwegeeinflüsse einen wesentlichen Anteil zum Gesamtfehlerbudget der Satellitennavigation bei. Während eine ganze Reihe von Fehlereinflüssen durch geeignete Modellierung oder differenzielle Verfahren deutlich reduziert werden können, ist dies durch die räumliche Dekorrelation der Mehrwegeeffekte nicht möglich. Obwohl in der Vergangenheit eine Vielzahl von Verfahren zur Mehrwegereduzierung vorgeschlagen und entwickelt wurden, stellen Mehrwegesignale noch immer eine wesentliche, stets zu berücksichtigende Fehlerquelle dar. Aus diesem Grund spielten die zu erwartenden Mehrwegefehler auch eine sehr wichtige Rolle im Zuge der Definition sowie der Optimierung der Galileo-Signalstruktur und können somit als wesentliches Design-Kriterium angesehen werden. Die vorliegende Arbeit gibt einen umfassenden Einblick in verschiedene Aspekte der Mehrwegeausbreitung, -reduzierung sowie der Detektion und der Überwachung auftretender Mehrwegeeffekte. Die Arbeit beschreibt zunächst die wichtigsten Aspekte der Mehrwegeausbreitung, wobei beispielsweise unterschiedliche Arten von Reflexionen oder unterschiedliche Entstehungsarten ebenso diskutiert werden wie typische Auswirkungen von Mehrwegesignalen wie die Entstehung periodischer Signalvariationen. Solche Signalvariationen sind in starkem Maße abhängig von der durch die Satellitenposition, dem Antennenstandpunkt und der Lage des Reflexionspunktes definierten Geometrie. Die Frequenz dieser Signalvariationen wird für unterschiedliche geometrische Verhältnisse berechnet. Zudem werden der Einfluss bzw. die Auswirkungen einer Mehrwegeausbreitung auf den Signalverarbeitungsprozess in einem GNSS Empfänger aufgezeigt. Einen weiteren Schwerpunkt dieser Arbeit bilden die derzeit gebräuchlichen Methoden zur Reduzierung von Mehrwegeeinflüssen. Dabei werden zunächst die wichtigsten empfängerinternen Ansätze vorgestellt. Aber auch Methoden wie die Verwendung von Antennenarrays oder spezieller Antennen bleiben nicht unberücksichtigt. Einige dieser Methoden bilden im Folgenden die Grundlage für die Bestimmung von typischen Mehrwegefehlern. Dazu wird eine neuartige Methodik vorgestellt, um aus Hüllkurven des Mehrwegefehlers aussagekräftige mittlere Mehrwegefehler zu bestimmen. Hierzu werden die Hüllkurven mit Hilfe einiger aus statistischen Kanalmodellen abgeleiteter Parameter in geeigneter Weise skaliert, um unterschiedlichen Mehrwegeumgebungen Rechnung zu tragen. Es wird gezeigt, dass die mit Hilfe dieser relativ einfachen und effizienten Methode ermittelten Mehrwegefehler in derselben Größenordnung liegen wie die aus komplexen statistischen Kanalmodellen ermittelten Fehler. Einen weiteren Themenkomplex stellen Methoden zur Detektion und zum Monitoring von Mehrwegeeinflüssen dar. Dabei werden zunächst derzeit verwendete Ansätze vorgestellt und hinsichtlich ihrer Vor- und Nachteile sowie hinsichtlich ihrer Echtzeitfähigkeit diskutiert. In Anschluss daran wird ein neuartiger Ansatz zur Detektion und zum Monitoring von Mehrwegesignalen in Echtzeit vorgestellt, der auf der Auswertung von Multikorrelatorbeobachtungen basiert. Ziel dieser Entwicklung ist es, einen potenziellen Nutzer sofort darüber informieren zu können, wenn ein Signal mit Mehrwegefehlern behaftet ist. Der vorgeschlagene Ansatz wurde in Form einer Matlab-basierten implementiert, welche im Folgenden zur Verifizierung und zur Bestimmung der Empfindlichkeit des Verfahrens verwendet wird

    Reliable Positioning and Journey Planning for Intelligent Transport Systems

    Get PDF
    Safety and reliability of intelligent transport systems applications require positioning accuracy at the sub-meter level with availability and integrity above 99%. At present, no single positioning sensor can meet these requirements in particular in the urban environment. Possible sensors that can be used for this task are first reviewed. Next, a suggested integrated system of low-cost real-time kinematic (RTK) GNSS, inertial measurement units (IMU) and vehicle odometer is discussed. To ensure positioning integrity, a method for fault detection in GNSS observations and computation of the protection levels (PL) that bound the position errors at a pre-set risk probability of the integrated sensors are presented. A case study is performed for demonstration. Moreover, to save energy, reduce pollution, and to improve the economy of the trip, proper journey planning is required. A new approach is introduced using 3D city models to predict the route with the best positioning integrity, availability and precision for route selection among different possible routes. The practical demonstration shows that effectiveness of this method. Finally, the potential of using the next generation SBAS for ITS applications was tested using kinematic tests carried out in various environments characterized by different levels of sky-visibility that may affect observations from GNSS

    Towards a plug&play solution for real-time precise positioning on mass-market devices

    Get PDF
    Despite pedestrian and vehicle navigation are the key applications enabled by the development of GNSS technology, the best approach to obtain accurate, reliable, continuous and robust PVT (Position-Velocity-Timing) solutions for this purpose has yet to be identified. The real limiting factor is the environment in which the users usually navigate: e.g. multipath effects and cycle slips in harsh urban environments strongly affect, respectively, pseudorange measurements and the continuity of carrier-phase observations. Therefore, positioning services relying on code-based algorithms cannot always meet the required accuracy - which varies depending on the targeted use case -; on the other hand, phase-based approaches as Real-Time Kinematic (RTK) and Precise Point Positioning (PPP) require strong effort to deal with the ambiguity term and its reinitialization when cycle slips occur. These problems are amplified when GNSS measurements from Android smartphone are considered due to the low-cost, linearly polarized and multi-purpose antenna which inevitably impacts on the quality of GNSS observables. This paper focuses on the performance analysis of GNSS POWER - an algorithm based on the loosely coupling between Single Point Positioning (SPP) solutions and variometric velocity - combined with IGS SSR corrections to increase the accuracy achievable in a real-time stand-alone solution. The integration of SSR corrections within GNSS POWER algorithm is validated in both static and kinematic scenarios using high-end GNSS receivers and Andorid smartphones. The results demonstrated the advantages of using SSR corrections on SPP and GNSS POWER solutions also on Android devices opening to new applications of real-time stand-alone positioning approaches on mass-market devices

    Bayesian algorithms for mobile terminal positioning in outdoor wireless environments

    Get PDF
    [no abstract

    Precise Point Positioning Augmentation for Various Grades of Global Navigation Satellite System Hardware

    Get PDF
    The next generation of low-cost, dual-frequency, multi-constellation GNSS receivers, boards, chips and antennas are now quickly entering the market, offering to disrupt portions of the precise GNSS positioning industry with much lower cost hardware and promising to provide precise positioning to a wide range of consumers. The presented work provides a timely, novel and thorough investigation into the positioning performance promise. A systematic and rigorous set of experiments has been carried-out, collecting measurements from a wide array of low-cost, dual-frequency, multi-constellation GNSS boards, chips and antennas introduced in late 2018 and early 2019. These sensors range from dual-frequency, multi-constellation chips in smartphones to stand-alone chips and boards. In order to be comprehensive and realistic, these experiments were conducted in a number of static and kinematic benign, typical, suburban and urban environments. In terms of processing raw measurements from these sensors, the Precise Point Positioning (PPP) GNSS measurement processing mode was used. PPP has become the defacto GNSS positioning and navigation technique for scientific and engineering applications that require dm- to cm-level positioning in remote areas with few obstructions and provides for very efficient worldwide, wide-array augmentation corrections. To enhance solution accuracy, novel contributions were made through atmospheric constraints and the use of dual- and triple-frequency measurements to significantly reduce PPP convergence period. Applying PPP correction augmentations to smartphones and recently released low-cost equipment, novel analyses were made with significantly improved solution accuracy. Significant customization to the York-PPP GNSS measurement processing engine was necessary, especially in the quality control and residual analysis functions, in order to successfully process these datasets. Results for new smartphone sensors show positioning performance is typically at the few dm-level with a convergence period of approximately 40 minutes, which is 1 to 2 orders of magnitude better than standard point positioning. The GNSS chips and boards combined with higher-quality antennas produce positioning performance approaching geodetic quality. Under ideal conditions, carrier-phase ambiguities are resolvable. The results presented show a novel perspective and are very promising for the use of PPP (as well as RTK) in next-generation GNSS sensors for various application in smartphones, autonomous vehicles, Internet of things (IoT), etc

    Benefits from a multi-receiver architecture for GNSS precise positioning

    Get PDF
    Precise positioning with a stand-alone GPS receiver or using differential corrections is known to be strongly degraded in an urban or sub-urban environment due to frequent signal masking, strong multipath effect, frequent cycle slips on carrier phase, etc. The objective of this Ph.D. thesis is to explore the possibility of achieving precise positioning with a low-cost architecture using multiple installed low-cost single-frequency receivers with known geometry whose one of them is RTK positioned w.r.t an external reference receiver. This setup is thought to enable vehicle attitude determination and RTK performance amelioration. In this thesis, we firstly proposed a method that includes an array of receivers with known geometry to enhance the performance of the RTK in different environments. Taking advantage of the attitude information and the known geometry of the installed array of receivers, the improvement of some internal steps of RTK w.r.t an external reference receiver can be achieved. The navigation module to be implemented in this work is an Extended Kalman Filter (EKF). The performance of a proposed two-receiver navigation architecture is then studied to quantify the improvements brought by the measurement redundancy. This concept is firstly tested on a simulator in order to validate the proposed algorithm and to give a reference result of our multi-receiver system’s performance. The pseudorange measurements and carrier phase measurements mathematical models are implemented in a realistic simulator. Different scenarios are conducted, including varying the distance between the 2 antennas of the receiver array, the satellite constellation geometry, and the amplitude of the noise measurement, in order to determine the influence of the use of an array of receivers. The simulation results show that our multi-receiver RTK system w.r.t an external reference receiver is more robust to noise and degraded satellite geometry, in terms of ambiguity fixing rate, and gets a better position accuracy under the same conditions when compared with the single receiver system. Additionally, our method achieves a relatively accurate estimation of the attitude of the vehicle which provides additional information beyond the positioning. In order to optimize our processing, the correlation of the measurement errors affecting observations taken by our array of receivers has been determined. Then, the performance of our real-time single frequency cycle-slip detection and repair algorithm has been assessed. These two investigations yielded important information so as to tune our Kalman Filter. The results obtained from the simulation made us eager to use actual data to verify and improve our multi-receiver RTK and attitude system. Tests based on real data collected around Toulouse, France, are used to test the performance of the whole methodology, where different scenarios are conducted, including varying the distance between the 2 antennas of the receiver array as well as the environmental conditions (open sky, suburban, and constrained urban environments). The thesis also tried to take advantage of a dual GNSS constellation, GPS and Galileo, to further strengthen the position solution and the reliable use of carrier phase measurements. The results show that our multi-receiver RTK system is more robust to degraded GNSS environments. Our experiments correlate favorably with our previous simulation results and further support the idea of using an array of receivers with known geometry to improve the RTK performance

    GNSS Vulnerabilities and Existing Solutions:A Review of the Literature

    Get PDF
    This literature review paper focuses on existing vulnerabilities associated with global navigation satellite systems (GNSSs). With respect to the civilian/non encrypted GNSSs, they are employed for proving positioning, navigation and timing (PNT) solutions across a wide range of industries. Some of these include electric power grids, stock exchange systems, cellular communications, agriculture, unmanned aerial systems and intelligent transportation systems. In this survey paper, physical degradations, existing threats and solutions adopted in academia and industry are presented. In regards to GNSS threats, jamming and spoofing attacks as well as detection techniques adopted in the literature are surveyed and summarized. Also discussed are multipath propagation in GNSS and non line-of-sight (NLoS) detection techniques. The review also identifies and discusses open research areas and techniques which can be investigated for the purpose of enhancing the robustness of GNSS
    corecore