257 research outputs found

    Timely processing of big data in collaborative large-scale distributed systems

    Get PDF
    Today’s Big Data phenomenon, characterized by huge volumes of data produced at very high rates by heterogeneous and geographically dispersed sources, is fostering the employment of large-scale distributed systems in order to leverage parallelism, fault tolerance and locality awareness with the aim of delivering suitable performances. Among the several areas where Big Data is gaining increasing significance, the protection of Critical Infrastructure is one of the most strategic since it impacts on the stability and safety of entire countries. Intrusion detection mechanisms can benefit a lot from novel Big Data technologies because these allow to exploit much more information in order to sharpen the accuracy of threats discovery. A key aspect for increasing even more the amount of data at disposal for detection purposes is the collaboration (meant as information sharing) among distinct actors that share the common goal of maximizing the chances to recognize malicious activities earlier. Indeed, if an agreement can be found to share their data, they all have the possibility to definitely improve their cyber defenses. The abstraction of Semantic Room (SR) allows interested parties to form trusted and contractually regulated federations, the Semantic Rooms, for the sake of secure information sharing and processing. Another crucial point for the effectiveness of cyber protection mechanisms is the timeliness of the detection, because the sooner a threat is identified, the faster proper countermeasures can be put in place so as to confine any damage. Within this context, the contributions reported in this thesis are threefold * As a case study to show how collaboration can enhance the efficacy of security tools, we developed a novel algorithm for the detection of stealthy port scans, named R-SYN (Ranked SYN port scan detection). We implemented it in three distinct technologies, all of them integrated within an SR-compliant architecture that allows for collaboration through information sharing: (i) in a centralized Complex Event Processing (CEP) engine (Esper), (ii) in a framework for distributed event processing (Storm) and (iii) in Agilis, a novel platform for batch-oriented processing which leverages the Hadoop framework and a RAM-based storage for fast data access. Regardless of the employed technology, all the evaluations have shown that increasing the number of participants (that is, increasing the amount of input data at disposal), allows to improve the detection accuracy. The experiments made clear that a distributed approach allows for lower detection latency and for keeping up with higher input throughput, compared with a centralized one. * Distributing the computation over a set of physical nodes introduces the issue of improving the way available resources are assigned to the elaboration tasks to execute, with the aim of minimizing the time the computation takes to complete. We investigated this aspect in Storm by developing two distinct scheduling algorithms, both aimed at decreasing the average elaboration time of the single input event by decreasing the inter-node traffic. Experimental evaluations showed that these two algorithms can improve the performance up to 30%. * Computations in online processing platforms (like Esper and Storm) are run continuously, and the need of refining running computations or adding new computations, together with the need to cope with the variability of the input, requires the possibility to adapt the resource allocation at runtime, which entails a set of additional problems. Among them, the most relevant concern how to cope with incoming data and processing state while the topology is being reconfigured, and the issue of temporary reduced performance. At this aim, we also explored the alternative approach of running the computation periodically on batches of input data: although it involves a performance penalty on the elaboration latency, it allows to eliminate the great complexity of dynamic reconfigurations. We chose Hadoop as batch-oriented processing framework and we developed some strategies specific for dealing with computations based on time windows, which are very likely to be used for pattern recognition purposes, like in the case of intrusion detection. Our evaluations provided a comparison of these strategies and made evident the kind of performance that this approach can provide

    Security Analysis of System Behaviour - From "Security by Design" to "Security at Runtime" -

    Get PDF
    The Internet today provides the environment for novel applications and processes which may evolve way beyond pre-planned scope and purpose. Security analysis is growing in complexity with the increase in functionality, connectivity, and dynamics of current electronic business processes. Technical processes within critical infrastructures also have to cope with these developments. To tackle the complexity of the security analysis, the application of models is becoming standard practice. However, model-based support for security analysis is not only needed in pre-operational phases but also during process execution, in order to provide situational security awareness at runtime. This cumulative thesis provides three major contributions to modelling methodology. Firstly, this thesis provides an approach for model-based analysis and verification of security and safety properties in order to support fault prevention and fault removal in system design or redesign. Furthermore, some construction principles for the design of well-behaved scalable systems are given. The second topic is the analysis of the exposition of vulnerabilities in the software components of networked systems to exploitation by internal or external threats. This kind of fault forecasting allows the security assessment of alternative system configurations and security policies. Validation and deployment of security policies that minimise the attack surface can now improve fault tolerance and mitigate the impact of successful attacks. Thirdly, the approach is extended to runtime applicability. An observing system monitors an event stream from the observed system with the aim to detect faults - deviations from the specified behaviour or security compliance violations - at runtime. Furthermore, knowledge about the expected behaviour given by an operational model is used to predict faults in the near future. Building on this, a holistic security management strategy is proposed. The architecture of the observing system is described and the applicability of model-based security analysis at runtime is demonstrated utilising processes from several industrial scenarios. The results of this cumulative thesis are provided by 19 selected peer-reviewed papers
    • …
    corecore