1,223 research outputs found

    Evaluation complexity of adaptive cubic regularization methods for convex unconstrained optimization

    Get PDF
    The adaptive cubic regularization algorithms described in Cartis, Gould and Toint [Adaptive cubic regularisation methods for unconstrained optimization Part II: Worst-case function- and derivative-evaluation complexity, Math. Program. (2010), doi:10.1007/s10107-009-0337-y (online)]; [Part I: Motivation, convergence and numerical results, Math. Program. 127(2) (2011), pp. 245-295] for unconstrained (nonconvex) optimization are shown to have improved worst-case efficiency in terms of the function- and gradient-evaluation count when applied to convex and strongly convex objectives. In particular, our complexity upper bounds match in order (as a function of the accuracy of approximation), and sometimes even improve, those obtained by Nesterov [Introductory Lectures on Convex Optimization, Kluwer Academic Publishers, Dordrecht, 2004; Accelerating the cubic regularization of Newton's method on convex problems, Math. Program. 112(1) (2008), pp. 159-181] and Nesterov and Polyak [Cubic regularization of Newton's method and its global performance, Math. Program. 108(1) (2006), pp. 177-205] for these same problem classes, without requiring exact Hessians or exact or global solution of the subproblem. An additional outcome of our approximate approach is that our complexity results can naturally capture the advantages of both first- and second-order methods. Ā© 2012 Taylor and Francis

    Adaptive Regularization Algorithms with Inexact Evaluations for Nonconvex Optimization

    Get PDF
    A regularization algorithm using inexact function values and inexact derivatives is proposed and its evaluation complexity analyzed. This algorithm is applicable to unconstrained problems and to problems with inexpensive constraints (that is constraints whose evaluation and enforcement has negligible cost) under the assumption that the derivative of highest degree is Ī²\beta-H\"{o}lder continuous. It features a very flexible adaptive mechanism for determining the inexactness which is allowed, at each iteration, when computing objective function values and derivatives. The complexity analysis covers arbitrary optimality order and arbitrary degree of available approximate derivatives. It extends results of Cartis, Gould and Toint (2018) on the evaluation complexity to the inexact case: if a qqth order minimizer is sought using approximations to the first pp derivatives, it is proved that a suitable approximate minimizer within Ļµ\epsilon is computed by the proposed algorithm in at most O(Ļµāˆ’p+Ī²pāˆ’q+Ī²)O(\epsilon^{-\frac{p+\beta}{p-q+\beta}}) iterations and at most O(āˆ£logā”(Ļµ)āˆ£Ļµāˆ’p+Ī²pāˆ’q+Ī²)O(|\log(\epsilon)|\epsilon^{-\frac{p+\beta}{p-q+\beta}}) approximate evaluations. An algorithmic variant, although more rigid in practice, can be proved to find such an approximate minimizer in O(āˆ£logā”(Ļµ)āˆ£+Ļµāˆ’p+Ī²pāˆ’q+Ī²)O(|\log(\epsilon)|+\epsilon^{-\frac{p+\beta}{p-q+\beta}}) evaluations.While the proposed framework remains so far conceptual for high degrees and orders, it is shown to yield simple and computationally realistic inexact methods when specialized to the unconstrained and bound-constrained first- and second-order cases. The deterministic complexity results are finally extended to the stochastic context, yielding adaptive sample-size rules for subsampling methods typical of machine learning.Comment: 32 page

    On global minimizers of quadratic functions with cubic regularization

    Get PDF
    In this paper, we analyze some theoretical properties of the problem of minimizing a quadratic function with a cubic regularization term, arising in many methods for unconstrained and constrained optimization that have been proposed in the last years. First we show that, given any stationary point that is not a global solution, it is possible to compute, in closed form, a new point with a smaller objective function value. Then, we prove that a global minimizer can be obtained by computing a finite number of stationary points. Finally, we extend these results to the case where stationary conditions are approximately satisfied, discussing some possible algorithmic applications.Comment: Optimization Letters (2018

    Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information

    Full text link
    We consider variants of trust-region and cubic regularization methods for non-convex optimization, in which the Hessian matrix is approximated. Under mild conditions on the inexact Hessian, and using approximate solution of the corresponding sub-problems, we provide iteration complexity to achieve Ļµ \epsilon -approximate second-order optimality which have shown to be tight. Our Hessian approximation conditions constitute a major relaxation over the existing ones in the literature. Consequently, we are able to show that such mild conditions allow for the construction of the approximate Hessian through various random sampling methods. In this light, we consider the canonical problem of finite-sum minimization, provide appropriate uniform and non-uniform sub-sampling strategies to construct such Hessian approximations, and obtain optimal iteration complexity for the corresponding sub-sampled trust-region and cubic regularization methods.Comment: 32 page
    • ā€¦
    corecore