8,453 research outputs found

    On the minimum distance of AG codes, on Weierstrass semigroups and the smoothability of certain monomial curves in 4-Space

    Full text link
    In this paper we treat several topics regarding numerical Weierstrass semigroups and the theory of Algebraic Geometric Codes associated to a pair (X,P)(X, P), where XX is a projective curve defined over the algebraic closure of the finite field FqF_q and P is a FqF_q-rational point of XX. First we show how to evaluate the Feng-Rao Order Bound, which is a good estimation for the minimum distance of such codes. This bound is related to the classical Weierstrass semigroup of the curve XX at PP. Further we focus our attention on the question to recognize the Weierstrass semigroups over fields of characteristic 0. After surveying the main tools (deformations and smoothability of monomial curves) we prove that the semigroups of embedding dimension four generated by an arithmetic sequence are Weierstrass.Comment: 30 pages, presented at CAAG 2010 (Bangalore, India

    Evaluating single-scale and/or non-planar diagrams by differential equations

    Get PDF
    We apply a recently suggested new strategy to solve differential equations for Feynman integrals. We develop this method further by analyzing asymptotic expansions of the integrals. We argue that this allows the systematic application of the differential equations to single-scale Feynman integrals. Moreover, the information about singular limits significantly simplifies finding boundary constants for the differential equations. To illustrate these points we consider two families of three-loop integrals. The first are form-factor integrals with two external legs on the light cone. We introduce one more scale by taking one more leg off-shell, p220p_2^2\neq 0. We analytically solve the differential equations for the master integrals in a Laurent expansion in dimensional regularization with ϵ=(4D)/2\epsilon=(4-D)/2. Then we show how to obtain analytic results for the corresponding one-scale integrals in an algebraic way. An essential ingredient of our method is to match solutions of the differential equations in the limit of small p22p_2^2 to our results at p220p_2^2\neq 0 and to identify various terms in these solutions according to expansion by regions. The second family consists of four-point non-planar integrals with all four legs on the light cone. We evaluate, by differential equations, all the master integrals for the so-called K4K_4 graph consisting of four external vertices which are connected with each other by six lines. We show how the boundary constants can be fixed with the help of the knowledge of the singular limits. We present results in terms of harmonic polylogarithms for the corresponding seven master integrals with six propagators in a Laurent expansion in ϵ\epsilon up to weight six.Comment: 27 pages, 2 figure

    Convolutional Goppa Codes

    Full text link
    We define Convolutional Goppa Codes over algebraic curves and construct their corresponding dual codes. Examples over the projective line and over elliptic curves are described, obtaining in particular some Maximum-Distance Separable (MDS) convolutional codes.Comment: 8 pages, submitted to IEEE Trans. Inform. Theor

    Hyperelliptic Theta-Functions and Spectral Methods

    Full text link
    A code for the numerical evaluation of hyperelliptic theta-functions is presented. Characteristic quantities of the underlying Riemann surface such as its periods are determined with the help of spectral methods. The code is optimized for solutions of the Ernst equation where the branch points of the Riemann surface are parameterized by the physical coordinates. An exploration of the whole parameter space of the solution is thus only possible with an efficient code. The use of spectral approximations allows for an efficient calculation of all quantities in the solution with high precision. The case of almost degenerate Riemann surfaces is addressed. Tests of the numerics using identities for periods on the Riemann surface and integral identities for the Ernst potential and its derivatives are performed. It is shown that an accuracy of the order of machine precision can be achieved. These accurate solutions are used to provide boundary conditions for a code which solves the axisymmetric stationary Einstein equations. The resulting solution agrees with the theta-functional solution to very high precision.Comment: 25 pages, 12 figure

    On the numerical evaluation of algebro-geometric solutions to integrable equations

    Full text link
    Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated to real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis not related to automorphisms of the curve, we study symplectic transformations to an adapted basis and give explicit formulae for M-curves. As examples we discuss solutions of the Davey-Stewartson and the multi-component nonlinear Schr\"odinger equations.Comment: 29 pages, 20 figure

    An Introduction to Algebraic Geometry codes

    Full text link
    We present an introduction to the theory of algebraic geometry codes. Starting from evaluation codes and codes from order and weight functions, special attention is given to one-point codes and, in particular, to the family of Castle codes

    Two-loop Integral Reduction from Elliptic and Hyperelliptic Curves

    Get PDF
    We show that for a class of two-loop diagrams, the on-shell part of the integration-by-parts (IBP) relations correspond to exact meromorphic one-forms on algebraic curves. Since it is easy to find such exact meromorphic one-forms from algebraic geometry, this idea provides a new highly efficient algorithm for integral reduction. We demonstrate the power of this method via several complicated two-loop diagrams with internal massive legs. No explicit elliptic or hyperelliptic integral computation is needed for our method.Comment: minor changes: more references adde

    Approaches and possible improvements in the area of multibody dynamics modeling

    Get PDF
    A wide ranging look is taken at issues involved in the dynamic modeling of complex, multibodied orbiting space systems. Capabilities and limitations of two major codes (DISCOS, TREETOPS) are assessed and possible extensions to the CONTOPS software are outlined. In addition, recommendations are made concerning the direction future development should take in order to achieve higher fidelity, more computationally efficient multibody software solutions
    corecore