26 research outputs found

    SAT-based optimal hypergraph partitioning with replication

    Get PDF
    We propose a methodology for optimal k-way partitioning with replication of directed hypergraphs via Boolean satisfiability. We begin by leveraging the power of existing and emerging SAT solvers to attack traditional logic bipartitioning and show good scaling behavior. We continue to present the first optimal partitioning results that admit generation and assignment of replicated nodes concurrently. Our framework is general enough that we also give the first published optimal results for partitioning with respect to the maximum subdomain degree metric and the sum of external degrees metric. We show that for the bipartitioning case we can feasibly solve problems of up to 150 nodes with simultaneous replication in hundreds of seconds. For other partitioning metrics, we are able to solve problems up to 40 nodes in hundreds of seconds

    High-Quality Hypergraph Partitioning

    Get PDF
    This dissertation focuses on computing high-quality solutions for the NP-hard balanced hypergraph partitioning problem: Given a hypergraph and an integer kk, partition its vertex set into kk disjoint blocks of bounded size, while minimizing an objective function over the hyperedges. Here, we consider the two most commonly used objectives: the cut-net metric and the connectivity metric. Since the problem is computationally intractable, heuristics are used in practice - the most prominent being the three-phase multi-level paradigm: During coarsening, the hypergraph is successively contracted to obtain a hierarchy of smaller instances. After applying an initial partitioning algorithm to the smallest hypergraph, contraction is undone and, at each level, refinement algorithms try to improve the current solution. With this work, we give a brief overview of the field and present several algorithmic improvements to the multi-level paradigm. Instead of using a logarithmic number of levels like traditional algorithms, we present two coarsening algorithms that create a hierarchy of (nearly) nn levels, where nn is the number of vertices. This makes consecutive levels as similar as possible and provides many opportunities for refinement algorithms to improve the partition. This approach is made feasible in practice by tailoring all algorithms and data structures to the nn-level paradigm, and developing lazy-evaluation techniques, caching mechanisms and early stopping criteria to speed up the partitioning process. Furthermore, we propose a sparsification algorithm based on locality-sensitive hashing that improves the running time for hypergraphs with large hyperedges, and show that incorporating global information about the community structure into the coarsening process improves quality. Moreover, we present a portfolio-based initial partitioning approach, and propose three refinement algorithms. Two are based on the Fiduccia-Mattheyses (FM) heuristic, but perform a highly localized search at each level. While one is designed for two-way partitioning, the other is the first FM-style algorithm that can be efficiently employed in the multi-level setting to directly improve kk-way partitions. The third algorithm uses max-flow computations on pairs of blocks to refine kk-way partitions. Finally, we present the first memetic multi-level hypergraph partitioning algorithm for an extensive exploration of the global solution space. All contributions are made available through our open-source framework KaHyPar. In a comprehensive experimental study, we compare KaHyPar with hMETIS, PaToH, Mondriaan, Zoltan-AlgD, and HYPE on a wide range of hypergraphs from several application areas. Our results indicate that KaHyPar, already without the memetic component, computes better solutions than all competing algorithms for both the cut-net and the connectivity metric, while being faster than Zoltan-AlgD and equally fast as hMETIS. Moreover, KaHyPar compares favorably with the current best graph partitioning system KaFFPa - both in terms of solution quality and running time

    Hypergraph Partitioning in the Cloud

    Get PDF
    The thesis investigates the partitioning and load balancing problem which has many applications in High Performance Computing (HPC). The application to be partitioned is described with a graph or hypergraph. The latter is of greater interest as hypergraphs, compared to graphs, have a more general structure and can be used to model more complex relationships between groups of objects such as non-symmetric dependencies. Optimal graph and hypergraph partitioning is known to be NP-Hard but good polynomial time heuristic algorithms have been proposed. In this thesis, we propose two multi-level hypergraph partitioning algorithms. The algorithms are based on rough set clustering techniques. The first algorithm, which is a serial algorithm, obtains high quality partitionings and improves the partitioning cut by up to 71\% compared to the state-of-the-art serial hypergraph partitioning algorithms. Furthermore, the capacity of serial algorithms is limited due to the rapid growth of problem sizes of distributed applications. Consequently, we also propose a parallel hypergraph partitioning algorithm. Considering the generality of the hypergraph model, designing a parallel algorithm is difficult and the available parallel hypergraph algorithms offer less scalability compared to their graph counterparts. The issue is twofold: the parallel algorithm and the complexity of the hypergraph structure. Our parallel algorithm provides a trade-off between global and local vertex clustering decisions. By employing novel techniques and approaches, our algorithm achieves better scalability than the state-of-the-art parallel hypergraph partitioner in the Zoltan tool on a set of benchmarks, especially ones with irregular structure. Furthermore, recent advances in cloud computing and the services they provide have led to a trend in moving HPC and large scale distributed applications into the cloud. Despite its advantages, some aspects of the cloud, such as limited network resources, present a challenge to running communication-intensive applications and make them non-scalable in the cloud. While hypergraph partitioning is proposed as a solution for decreasing the communication overhead within parallel distributed applications, it can also offer advantages for running these applications in the cloud. The partitioning is usually done as a pre-processing step before running the parallel application. As parallel hypergraph partitioning itself is a communication-intensive operation, running it in the cloud is hard and suffers from poor scalability. The thesis also investigates the scalability of parallel hypergraph partitioning algorithms in the cloud, the challenges they present, and proposes solutions to improve the cost/performance ratio for running the partitioning problem in the cloud. Our algorithms are implemented as a new hypergraph partitioning package within Zoltan. It is an open source Linux-based toolkit for parallel partitioning, load balancing and data-management designed at Sandia National Labs. The algorithms are known as FEHG and PFEHG algorithms

    Wirelength and timing driven standard-cell placement

    Get PDF

    The Peano software---parallel, automaton-based, dynamically adaptive grid traversals

    Get PDF
    We discuss the design decisions, design alternatives, and rationale behind the third generation of Peano, a framework for dynamically adaptive Cartesian meshes derived from spacetrees. Peano ties the mesh traversal to the mesh storage and supports only one element-wise traversal order resulting from space-filling curves. The user is not free to choose a traversal order herself. The traversal can exploit regular grid subregions and shared memory as well as distributed memory systems with almost no modifications to a serial application code. We formalize the software design by means of two interacting automata—one automaton for the multiscale grid traversal and one for the application-specific algorithmic steps. This yields a callback-based programming paradigm. We further sketch the supported application types and the two data storage schemes realized before we detail high-performance computing aspects and lessons learned. Special emphasis is put on observations regarding the used programming idioms and algorithmic concepts. This transforms our report from a “one way to implement things” code description into a generic discussion and summary of some alternatives, rationale, and design decisions to be made for any tree-based adaptive mesh refinement software
    corecore