21,549 research outputs found

    Spatial optimization for land use allocation: accounting for sustainability concerns

    Get PDF
    Land-use allocation has long been an important area of research in regional science. Land-use patterns are fundamental to the functions of the biosphere, creating interactions that have substantial impacts on the environment. The spatial arrangement of land uses therefore has implications for activity and travel within a region. Balancing development, economic growth, social interaction, and the protection of the natural environment is at the heart of long-term sustainability. Since land-use patterns are spatially explicit in nature, planning and management necessarily must integrate geographical information system and spatial optimization in meaningful ways if efficiency goals and objectives are to be achieved. This article reviews spatial optimization approaches that have been relied upon to support land-use planning. Characteristics of sustainable land use, particularly compactness, contiguity, and compatibility, are discussed and how spatial optimization techniques have addressed these characteristics are detailed. In particular, objectives and constraints in spatial optimization approaches are examined

    Energy Transition and Urban Planning for Local Development. A Critical Review of the Evolution of Integrated Spatial and Energy Planning

    Get PDF
    The aim of the article is to analyse the evolution of spatial and energy planning integration, seen as a mean to foster local development, from the birth of the theme to the current prospects of shared sustainability and Decentralised Energy System (DES) solutions. The paper is a review of the evolution of the spatial and energy planning integration, exploring weaknesses and future opportunities. After an initial period of intense theoretical elaboration, the relationship between energy and city physical-functional organization and planning is still far from finding an implementation. The article explains this lack of integration through the analyses of significant steps in the last 50 years with the aim to outline current obstacles in achieving a more comprehensive vision of energy and spatial planning. The experiences selected highlight critical aspects concerning the trend towards the divergence of energy planning from systemic urban and spatial planning, also due to the low consideration of energy as a factor for local development. From the processes of decentralization and energy localism, some perspectives emerge which converge on the eco-energy district as a projection of the local energy community and which seem to enhance a more systemic and strategic dimension of planning

    Municipal transitions: The social, energy, and spatial dynamics of sociotechnical change in South Tyrol, Italy

    Get PDF
    With the aim of proposing recommendations on how to use social and territorial specificities as levers for wider achievement of climate and energy targets at local level, this research analyses territories as sociotechnical systems. Defining the territory as a sociotechnical system allows us to underline the interrelations between space, energy and society. Groups of municipalities in a region can be identified with respect to their potential production of renewable energy by means of well-known data-mining approaches. Similar municipalities linking together can share ideas and promote collaborations, supporting clever social planning in the transition towards a new energy system. The methodology is applied to the South Tyrol case study (Italy). Results show eight different spatially-based sociotechnical systems within the coherent cultural and institutional context of South Tyrol. In particular, this paper observes eight different systems in terms of (1) different renewable energy source preferences in semi-urban and rural contexts; (2) different links with other local planning, management, and policy needs; (3) different socio-demographic specificities of individuals and families; (4) presence of different kinds of stakeholders or of (5) different socio-spatial organizations based on land cover. Each energy system has its own specificities and potentialities, including social and spatial dimensions, that can address a more balanced, inclusive, equal, and accelerated energy transition at the local and translocal scale

    Multi-Sectoral Uses of Water & Approaches to DSS in Water Management in the NOSTRUM Partner Countries of the Mediterranean

    Get PDF
    Agriculture contributes an average of about 10% to the GDP of the partner countries of the Mediterranean involved in the project NOSTRUM. On the other hand, industry contributes an average of about 30% in these countries. It is to remark that in almost all countries the weight of industry accounts between 20% and 30% of the national economy, with the exception of Algeria, where this weight is at about 60%, mainly imputable to the great development of oil extraction and energy sector. In the majority of participating countries, agriculture sector is the greatest consumer of water (more than 65% of total water consumption). Although the case from France where agriculture water use is only about 10% of total water consumption and Italy with around 45%, but this may be due to the fact that most countries reporting for their agricultural water consumption do not include the amount of rain-fed to cultivated lands as a part of their agriculture water use. Most agriculture water use is limited to irrigation water from streams/rivers and groundwater. Rain-fed cultivated-lands in France is almost 90% of its total cultivated area. For Croatia, data given in National Report indicate a 0% of water use for agriculture. The average of water use for agriculture for all the basin is of 62.3% but with a great scatter expressed by a high standard deviation (26.8%) that reflects a wide variation range of water use for agriculture among different countries. The average of water use for agriculture is weakly less on northern countries (52.7%) than on southern countries (75.2) but the twice values are still on the range of the average of the all basin and cannot be taken as indication of difference between north and south. Integrated Water Resources Management (IWRM) plans are currently developed and implemented by various countries to organize the multi-sectoral water uses. On the other hand, the need for Decision Support System (DSS) as a tool in developing and implementing Integrated Water Resources Management (IWRM) is in growing demand. In spite of the great potential for the research and the development of DSS, the utilization of DSS in water management is not widely spread in the partner countries. In some countries, DSS was planned and developed at the scale of territorial integrated water management. Integration of DSS application to the existing IWRM systems at the partner countries would assist in satisfying the water related Millennium Development Goals (MDGs).Integrated Water Resources Management, Decision Support Systems, Mediterranean Basin

    Spatially optimised sustainable urban development

    Get PDF
    PhD ThesisTackling urbanisation and climate change requires more sustainable and resilient cities, which in turn will require planners to develop a portfolio of measures to manage climate risks such as flooding, meet energy and greenhouse gas reduction targets, and prioritise development on brownfield sites to preserve greenspace. However, the policies, strategies and measures put in place to meet such objectives can frequently conflict with each other or deliver unintended consequences, hampering long-term sustainability. For example, the densification of cities in order to reduce transport energy use can increase urban heat island effects and surface water flooding from extreme rainfall events. In order to make coherent decisions in the presence of such complex multi-dimensional spatial conflicts, urban planners require sophisticated planning tools to identify and manage potential trade-offs between the spatial strategies necessary to deliver sustainability. To achieve this aim, this research has developed a multi-objective spatial optimisation framework for the spatial planning of new residential development within cities. The implemented framework develops spatial strategies of required new residential development that minimize conflicts between multiple sustainability objectives as a result of planning policy and climate change related hazards. Five key sustainability objectives have been investigated, namely; (i) minimizing risk from heat waves, (ii) minimizing the risk from flood events, (iii) minimizing travel costs in order to reduce transport emissions, (iv) minimizing urban sprawl and (v) preventing development on existing greenspace. A review identified two optimisation algorithms as suitable for this task. Simulated Annealing (SA) is a traditional optimisation algorithm that uses a probabilistic approach to seek out a global optima by iteratively assessing a wide range of spatial configurations against the objectives under consideration. Gradual ‘cooling’, or reducing the probability of jumping to a different region of the objective space, helps the SA to converge on globally optimal spatial patterns. Genetic Algorithms (GA) evolve successive generations of solutions, by both recombining attributes and randomly mutating previous generations of solutions, to search for and converge towards superior spatial strategies. The framework works towards, and outputs, a series of Pareto-optimal spatial plans that outperform all other plans in at least one objective. This approach allows for a range of best trade-off plans for planners to choose from. ii Both SA and GA were evaluated for an initial case study in Middlesbrough, in the North East of England, and were able to identify strategies which significantly improve upon the local authority’s development plan. For example, the GA approach is able to identify a spatial strategy that reduces the travel to work distance between new development and the central business district by 77.5% whilst nullifying the flood risk to the new development. A comparison of the two optimisation approaches for the Middlesbrough case study revealed that the GA is the more effective approach. The GA is more able to escape local optima and on average outperforms the SA by 56% in in the Pareto fronts discovered whilst discovering double the number of multi-objective Pareto-optimal spatial plans. On the basis of the initial Middlesbrough case study the GA approach was applied to the significantly larger, and more computationally complex, problem of optimising spatial development plans for London in the UK – a total area of 1,572km2. The framework identified optimal strategies in less than 400 generations. The analysis showed, for example, strategies that provide the lowest heat risk (compared to the feasible spatial plans found) can be achieved whilst also using 85% brownfield land to locate new development. The framework was further extended to investigate the impact of different development and density regulations. This enabled the identification of optimised strategies, albeit at lower building density, that completely prevent any increase in urban sprawl whilst also improving the heat risk objective by 60% against a business as usual development strategy. Conversely by restricting development to brownfield the ability of the spatial plan to optimise future heat risk is reduced by 55.6% against the business as usual development strategy. The results of both case studies demonstrate the potential of spatial optimisation to provide planners with optimal spatial plans in the presence of conflicting sustainability objectives. The resulting diagnostic information provides an analytical appreciation of the sensitivity between conflicts and therefore the overall robustness of a plan to uncertainty. With the inclusion of further objectives, and qualitative information unsuitable for this type of analysis, spatial optimization can constitute a powerful decision support tool to help planners to identify spatial development strategies that satisfy multiple sustainability objectives and provide an evidence base for better decision making

    Integrated planning of water and land-use

    Get PDF
    The role of water in spatial planning has received increasing attention in recent years. It was, for example, one of the leading motives in the preparation of the latest National Spatial Planning Note for The Netherlands. For the preparation of such spatial plans, and to support the associated policy analysis, there is a need to fully identify and characterize the interactions between the water sector and spatial planning and establish the process for making consistent joint projections for the water sector and land-use. This should account for spatial claims from the water sector, balance those claims with claims from other sectors, and feed back spatial constraints and opportunities. Land-use markets and government policies (translated e.g. in spatial reservations) form an important input in this balance. Modeling is indispensable to keep track of spatial characteristics and trace changes. Most of the available modeling considers a layered structure with a layer for national/regional projections and a GIS based layer to keep track of land use changes. Basically such model makes a distribution (rule based) of the national projections into the GIS based spatial raster, followed by an impact assessment based on the changes in the raster. Those models are generally weak in representing the processes driving land use changes such as the housing and labor market and – the water sector. The challenge remains to set up a suitable module covering these spatial - and water sector development processes. Based on the experience of the authors with many water studies and the recent development of a space-transport modeling tool (integration of transport and land-use), a sketch will be made of the requirements for such module. The scope for such planning tool will be illustrated (with data for The Netherlands), addressing key aspects such as competition for space, costs, risk, and environmental impact.
    • 

    corecore