5,730 research outputs found

    The ALPS project release 1.3: open source software for strongly correlated systems

    Full text link
    We present release 1.3 of the ALPS (Algorithms and Libraries for Physics Simulations) project, an international open source software project to develop libraries and application programs for the simulation of strongly correlated quantum lattice models such as quantum magnets, lattice bosons, and strongly correlated fermion systems. Development is centered on common XML and binary data formats, on libraries to simplify and speed up code development, and on full-featured simulation programs. The programs enable non-experts to start carrying out numerical simulations by providing basic implementations of the important algorithms for quantum lattice models: classical and quantum Monte Carlo (QMC) using non-local updates, extended ensemble simulations, exact and full diagonalization (ED), as well as the density matrix renormalization group (DMRG). Changes in the new release include a DMRG program for interacting models, support for translation symmetries in the diagonalization programs, the ability to define custom measurement operators, and support for inhomogeneous systems, such as lattice models with traps. The software is available from our web server at http://alps.comp-phys.org/

    Quantum Graphical Models and Belief Propagation

    Get PDF
    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersely-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described.Comment: 58 pages, 9 figure
    • …
    corecore