1,389 research outputs found

    Mathematics in Software Reliability and Quality Assurance

    Get PDF
    This monograph concerns the mathematical aspects of software reliability and quality assurance and consists of 11 technical papers in this emerging area. Included are the latest research results related to formal methods and design, automatic software testing, software verification and validation, coalgebra theory, automata theory, hybrid system and software reliability modeling and assessment

    Software timing analysis for complex hardware with survivability and risk analysis

    Get PDF
    The increasing automation of safety-critical real-time systems, such as those in cars and planes, leads, to more complex and performance-demanding on-board software and the subsequent adoption of multicores and accelerators. This causes software's execution time dispersion to increase due to variable-latency resources such as caches, NoCs, advanced memory controllers and the like. Statistical analysis has been proposed to model the Worst-Case Execution Time (WCET) of software running such complex systems by providing reliable probabilistic WCET (pWCET) estimates. However, statistical models used so far, which are based on risk analysis, are overly pessimistic by construction. In this paper we prove that statistical survivability and risk analyses are equivalent in terms of tail analysis and, building upon survivability analysis theory, we show that Weibull tail models can be used to estimate pWCET distributions reliably and tightly. In particular, our methodology proves the correctness-by-construction of the approach, and our evaluation provides evidence about the tightness of the pWCET estimates obtained, which allow decreasing them reliably by 40% for a railway case study w.r.t. state-of-the-art exponential tails.This work is a collaboration between Argonne National Laboratory and the Barcelona Supercomputing Center within the Joint Laboratory for Extreme-Scale Computing. This research is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under contract number DE-AC02- 06CH11357, program manager Laura Biven, and by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contract 2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Timing of autonomous driving software: problem analysis and prospects for future solutions

    Get PDF
    The software used to implement advanced functionalities in critical domains (e.g. autonomous operation) impairs software timing. This is not only due to the complexity of the underlying high-performance hardware deployed to provide the required levels of computing performance, but also due to the complexity, non-deterministic nature, and huge input space of the artificial intelligence (AI) algorithms used. In this paper, we focus on Apollo, an industrial-quality Autonomous Driving (AD) software framework: we statistically characterize its observed execution time variability and reason on the sources behind it. We discuss the main challenges and limitations in finding a satisfactory software timing analysis solution for Apollo and also show the main traits for the acceptability of statistical timing analysis techniques as a feasible path. While providing a consolidated solution for the software timing analysis of Apollo is a huge effort far beyond the scope of a single research paper, our work aims to set the basis for future and more elaborated techniques for the timing analysis of AD software.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P, the SuPerCom European Research Council (ERC) project under the European Union’s Horizon 2020 research and innovation programme (grant agreement No.772773), and the HiPEAC Network of Excellence. MINECO partially supported Enrico Mezzetti under Juan de la Cierva-Incorporación postdoctoral fellowship (IJCI-2016-27396), and Leonidas Kosmidis under Juan de la Cierva-Formación postdoctoral fellowship (FJCI-2017-34095).Peer ReviewedPostprint (author's final draft

    Development and evaluation of models for assessing geochemical pollution sources with multiple reactive chemical species for sustainable use of aquifer systems: source characterization and monitoring network design

    Get PDF
    Michael designed a groundwater flow and reactive transport optimization model. He applied this model to characterize contaminant sources in Australia's first large scale uranium mine site in the Northern Territory. He identified the contamination sources to the groundwater system in the area. His findings will assist planning actions and steps needed to implement the mitigation strategy of this contaminated aquifer

    Path dependence, its critics and the quest for ‘historical economics’

    Get PDF
    The concept of path dependence refers to a property of contingent, non- reversible dynamical processes, including a wide array of biological and social processes that can properly be described as 'evolutionary.' To dispell existing confusions in the literature, and clarify the meaning and significance of path dependence for economists, the paper formulates definitions that relate the phenomenon to the property of non-ergodicity in stochastic processes; it examines the nature of the relationship between between path dependence and 'market failure,' and discusses the meaning of 'lock-in.' Unlike tests for the presence of non-ergodicity, assessments of the economic significance of path dependence are shown to involve difficult issues of counterfactual specification, and the welfare evaluation of alternative dynamic paths rather than terminal states. The policy implications of the existence of path dependence are shown to be more subtle and, as a rule, quite different from those which have been presumed by critics of the concept. A concluding section applies the notion of 'lock-in' reflexively to the evolution of economic analysis, suggesting that resistence to historical economics is a manifestation of 'sunk cost hysteresis' in the sphere of human cognitive development.path dependence, non-ergodicity, irreversibility, lock-in, counterfactual analysis
    • 

    corecore