116 research outputs found

    Modeling & Analysis of Design Parameters for Portable Hand Orthoses to Assist Upper Motor Neuron Syndrome Impairments and Prototype Design

    Get PDF
    Wearable assistive robotics have the potential to address an unmet medical need of reducing disability in individuals with chronic hand impairments due to neurological trauma. Despite myriad prior works, few patients have seen the benefits of such devices. Following application experience with tendon-actuated soft robotic gloves and a collaborator\u27s orthosis with novel flat-spring actuators, we identified two common assumptions regarding hand orthosis design. The first was reliance on incomplete studies of grasping forces during activities of daily living as a basis for design criteria, leading to poor optimization. The second was a neglect of increases in muscle tone following neurological trauma, rendering most devices non-applicable to a large subset of the population. To address these gaps, we measured joint torques during activities of daily living with able-bodied subjects using dexterity representative of orthosis-aided motion. Next, we measured assistive torques needed to extend the fingers of individuals with increased flexor tone following TBI. Finally, we applied this knowledge to design a cable actuated orthosis for assisting finger extension, providing a basis for future work focused on an under-represented subgroup of patients

    Orthoses for Spinal Cord Injury Patients

    Get PDF
    There are some limitations for patients with spinal cord injury (SCI) when walking with assistive devices. Heavy energy expenditure and walking high loads on the upper limb joints are two main reasons of high rejection rate of orthosis by these patients . Many devices have been designed to enable people with paraplegia to ambulate in an upright position as a solution of these limitations such as mechanical orthoses, hybrid orthoses and powered orthoses. All these devices are designed to solve the problem of standing and walking, but there are some other important notes, which should be considered. For example, the size and weight of external orthoses, donning and doffing, cumbersomeness and independency for using are very important

    Development of a functional hand orthosis for boys with Duchenne muscular dystrophy

    Get PDF

    Design of a Knee Exoskeleton actuated with Artificial Muscles of SMA

    Get PDF
    This project presents the preliminary design of a powered exoskeleton for the knee joint, build upon the structural framework of DonJoy’s X-Act Rom Lite - Knee Brace. The device allows exclusively one degree of freedom, intended for the flexion and extension of the lower limb. The actuation mechanism is based on artificial muscles of Nitinol fibers, which are a type of Shape Memory Alloys (SMA). These wires contract 4% of its original length as the temperature rises due to the Joule Effect, when connected to a power supply. Thanks to this phenomenon, the proposed robotic orthosis presents portability, lightness and noiseless performance, in comparison to similar products. The main role of these instruments is to conduct medical rehabilitation therapy for those patients who have suffered from neurological diseases, musculoskeletal lesions or spinal cord injuries. Consequently, the wearer might recover -partially or fully- the movement on the joint. The results from several trials were obtained after mimicking real rehabilitation positions -like sitting, standing or lying down- and are analyzed thoroughly in this thesis. All in all, this prototype proves how the SMA actuators are a viable alternative to create lower extremity robotic devices for rehabilitation.Ingeniería Biomédic

    Design and Evaluation of a Knee-Extension-Assist

    Get PDF
    Quadriceps muscle weakness is a condition that can result from a wide variety of causes, from diseases like polio and multiple sclerosis to injuries of the head and spine. Individuals with weakened quadriceps often have difficulty supplying the knee-extension moments required during common mobility tasks. Existing powered orthoses that provide an assistive knee-extension moment are large and heavy, with power supplies that generally last less than two hours. A new device that provides a knee-extension-assist moment was designed to aid an individual with quadriceps muscle weakness to stand up from a seated position, sit from a standing position, and walk up and down an inclined surface. The knee-extension-assist (KEA) was designed as a modular component to be incorporated into existing knee-ankle-foot-orthoses (KAFO). The KEA consists of three springs that are compressed, as the knee is flexed under bodyweight, by cables that wrap around a sheave at the knee. The KEA returns the stored energy from knee flexion as an extension moment during knee extension. During swing or other non-weight bearing activities, the device is disengaged from the KAFO by decoupling the sheave from the KAFO knee joint, allowing free knee joint motion. A prototype was built and mechanically tested to determine KEA behaviour during loading and extension and to ensure proper KEA function. For biomechanical evaluation, able-bodied subjects used the prototype KEA while performing sit-to-stand, stand-to-sit, ramp ascent, and ramp descent tasks. The KEA facilitated sitting and standing, providing an average of 53 % of the required extension moment for the two participants, which allowed one participant to reduce quadriceps usage by 38 % and the other to perform sit-to-stand in a slower and more controlled manner that was not possible without the KEA. KEA use during ramp gait caused an overall increase in quadriceps activation by 76 %, on average, with use. Future efforts will be made to modify the design to improve functionality, especially for ramp gait, and to reduce device size and weight

    Design and Development of a Lightweight Ankle Exoskeleton for Human Walking Augmentation

    Get PDF
    RESUMÉ La plupart des exosquelettes motorisés de la cheville ont une masse distale considérable, ce qui limite leur capacité à réduire l’énergie dépensée par l’utilisateur durant la marche. L’objectif de notre travail est de développer un exosquelette de chevilles avec le minimum de masse distale ajoutée comparé aux exosquelettes motorisés de chevilles existants. Aussi, l’exosquelette doit fournir au moins 50 Nm de support au couple de flexion plantaire. L’exosquelette développé dans le cadre de ce mémoire utilise deux câbles Bowden pour transmettre la force mécanique de l’unité d’actionnement attachée à la taille aux deux tiges en fibre de Carbonne attachées à la botte de l’utilisateur. Quand les deux tiges sont tirées, ils génèrent un couple qui supporte le mouvement de flexion plantaire à la fin de la phase d’appui du cycle de marche. Une pièce conçue sur mesure et imprimé en plastique par prototypage rapide a été attachée au tibia pour ajuster la direction des câbles. Une étude d’optimisation a été effectuée pour minimiser la masse des tiges limitant ainsi la masse distale de l’exosquelette (attaché au tibia et pied) à seulement 348 g. Le résultat principal obtenu à partir des tests de marche est la réduction de l’activité des muscles soléaire et gastrocnémien du sujet par une moyenne de 37% et 44% respectivement lors de la marche avec l’exosquelette comparée à la marche normale. Cette réduction s’est produite quand l’exosquelette a fourni une puissance mécanique de 19 ± 2 W avec un actionnement qui a commencé à 38% du cycle de marche. Ce résultat démontre le potentiel de notre exosquelette à réduire le cout métabolique de marche et souligne l’importance de réduire la masse distale d’un exosquelette de marche.----------ABSTRACT Most of powered ankle exoskeletons add considerable distal mass to the user which limits their capacity to reduce the metabolic energy of walking. The objective of the work presented in this master thesis is to develop an ankle exoskeleton with a minimum added distal mass compared to existing autonomous powered ankle exoskeletons, while providing at least 50 Nm of assistive plantar flexion torque. The exoskeleton developed in this master thesis uses Bowden cables to transmit the mechanical force from the actuation unit attached to the waist to the carbon fiber struts fixed on the boot. As the struts are pulled, they create an assistive ankle plantar flexion torque. A 3D-printed brace was attached to the shin to adjust the direction of the cables. A design optimization study was performed to minimize the mass of the struts, thereby limiting the total added distal mass, attached to the shin and foot, to only 348 g. The main result obtained from walking tests was the reduction of the soleus and gastrocnemius muscles activity by an average of 37% and 44% respectively when walking with the exoskeleton compared to normal walking. This reduction occurred when the exoskeleton delivered a mechanical power of 19 ± 2 W with an actuation onset fixed at 38% of the gait cycle. This result shows the potential of the proposed exoskeleton to reduce the metabolic cost of walking and emphasizes the importance of minimizing the distal mass of ankle exoskeletons

    A Preliminary Study on Robot-Assisted Ankle Rehabilitation for the Treatment of Drop Foot

    Get PDF
    This paper involves the use of a compliant ankle rehabilitation robot (CARR) for the treatment of drop foot. The robot has a bio-inspired design by employing four Festo Fluidic muscles (FFMs) that mimic skeletal muscles actuating three rotational degrees of freedom (DOFs). A trajectory tracking controller was developed in joint task space to track the predefined trajectory of the end effector. This controller was achieved by controlling individual FFM length based on inverse kinematics. Three patients with drop foot participated in a preliminary study to evaluate the potential of the CARR for clinical applications. Ankle stretching exercises along ankle dorsiflexion and plantarflexion (DP) were delivered for treating drop foot. All patients gave positive feedback in using this ankle robot for the treatment of drop foot, although some limitations exist. The proposed controller showed satisfactory accuracy in trajectory tracking, with all root mean square deviation (RMSD) values no greater than 0.0335 rad and normalized root mean square deviation (NRMSD) values less than 6.7%. These preliminary findings support the potentials of the CARR for clinical applications. Future work will investigate the effectiveness of the robot for treating drop foot on a large sample of subjects

    Design and Testing of an Externally Powered Elbow Prosthesis

    Get PDF
    There continues to be a need for an externally powered prothesis which can be used by above elbow amputee patients who cannot effectively operate a conventional body powered prosthesis. This device must be reliable, economically constructed, and easily maintained in the field. A device employing a drive mechanism powered by a small DC motor has been designed to meet this need. The device is based on an inversion of the belt driven pulley system and is a continuation of previous work employing this mechanism. A prototype was designed using this system in a size suitable for patient application. The model was constructed from commercially available parts and some shop fabrication. Once constructed, a laboratory testing program was devised to subject the prototype to typical tasks it would be required to perform in the field. The test results are included in the report. Also included are the kinematic and force analyses of the model and a computer program, based on the design equations written to simulate the motion of the device under load. A comparison between the simulated and experimental results is also presented. The major intent of this project was to design and test a reliable externally powered above elbow prosthesis from commercially available parts. The design has proven to be a viable concept and should be pursued further based on the recommendations given in this thesis
    • …
    corecore