13 research outputs found

    Remote Sensing of Environmental Changes in Cold Regions

    Get PDF
    This Special Issue gathers papers reporting recent advances in the remote sensing of cold regions. It includes contributions presenting improvements in modeling microwave emissions from snow, assessment of satellite-based sea ice concentration products, satellite monitoring of ice jam and glacier lake outburst floods, satellite mapping of snow depth and soil freeze/thaw states, near-nadir interferometric imaging of surface water bodies, and remote sensing-based assessment of high arctic lake environment and vegetation recovery from wildfire disturbances in Alaska. A comprehensive review is presented to summarize the achievements, challenges, and opportunities of cold land remote sensing

    Changes in Snow Phenology from 1979 to 2016 over the Tianshan Mountains, Central Asia

    Get PDF
    Snowmelt from the Tianshan Mountains (TS) is a major contributor to the water resources of the Central Asian region. Thus, changes in snow phenology over the TS have significant implications for regional water supplies and ecosystem services. However, the characteristics of changes in snow phenology and their influences on the climate are poorly understood throughout the entire TS due to the lack of in situ observations, limitations of optical remote sensing due to clouds, and decentralized political landscapes. Using passive microwave remote sensing snow data from 1979 to 2016 across the TS, this study investigates the spatiotemporal variations of snow phenology and their attributes and implications. The results show that the mean snow onset day (Do), snow end day (De), snow cover duration days (Dd), and maximum snow depth (SDmax) from 1979 to 2016 were the 78.2nd day of hydrological year (DOY), 222.4th DOY, 146.2 days, and 16.1 cm over the TS, respectively. Dd exhibited a spatial distribution of days with a temperature of \u3c0 \u3e°C derived from meteorological station observations. Anomalies of snow phenology displayed the regional diversities over the TS, with shortened Dd in high-altitude regions and the Fergana Valley but increased Dd in the Ili Valley and upper reaches of the Chu and Aksu Rivers. Increased SDmax was exhibited in the central part of the TS, and decreased SDmax was observed in the western and eastern parts of the TS. Changes in Dd were dominated by earlier De, which was caused by increased melt-season temperatures (Tm). Earlier De with increased accumulation of seasonal precipitation (Pa) influenced the hydrological processes in the snowmelt recharge basin, increasing runoff and earlier peak runoff in the spring, which intensified the regional water crisi

    HUMAN AND CLIMATE IMPACTS ON FLOODING VIA REMOTE SENSING, BIG DATA ANALYTICS, AND MODELING

    Get PDF
    Over the last 20 years, the amount of streamflow has greatly increased and spring snowmelt floods have occurred more frequently in the north-central U.S. In the Red River of the North Basin (RRB) overlying portions of North Dakota and Minnesota, six of the 13 major floods over the past 100 years have occurred since the late 1990s. Based on numerous previous studies as well as senior flood forecasters’ experiences, recent hydrological changes related to human modifications [e.g. artificial subsurface drainage (SSD) expansion] and climate change are potential causes of notable forecasting failures over the past decade. My dissertation focuses on the operational and scientific gaps in current forecasting models and observational data and provides insights and value to both the practitioner and the research community. First, the current flood forecasting model needs both the location and installation timing of SSD and SSD physics. SSD maps were developed using satellite “big” data and a machine learning technique. Next, using the maps with a land surface model, the impacts of SSD expansion on regional hydrological changes were quantified. In combination with model physics, the inherent uncertainty in the airborne gamma snow survey observations hinders the accurate flood forecasting model. The operational airborne gamma snow water equivalent (SWE) measurements were improved by updating antecedent surface moisture conditions using satellite observations on soil moisture. From a long-term perspective, flood forecasters and state governments need knowledge of historical changes in snowpack and snowmelt to help flood management and to develop strategies to adapt to climate changes. However, historical snowmelt trends have not been quantified in the north-central U.S. due to the limited historical snow data. To overcome this, the current available historical long-term SWE products were evaluated across diverse regions and conditions. Using the most reliable SWE product, a trend analysis quantified the magnitude of change extreme snowpack and melt events over the past 36 years. Collectively, this body of research demonstrates that human and climate impacts, as well as limited and noisy data, cause uncertainties in flood prediction in the great plains, but integrated approaches using remote sensing, big data analytics, and modeling can quantify the hydrological changes and reduce the uncertainties. This dissertation improves the practice of flood forecasting in Red River of the North Basin and advances research in hydrology and snow science

    Deep Learning Techniques in Extreme Weather Events: A Review

    Full text link
    Extreme weather events pose significant challenges, thereby demanding techniques for accurate analysis and precise forecasting to mitigate its impact. In recent years, deep learning techniques have emerged as a promising approach for weather forecasting and understanding the dynamics of extreme weather events. This review aims to provide a comprehensive overview of the state-of-the-art deep learning in the field. We explore the utilization of deep learning architectures, across various aspects of weather prediction such as thunderstorm, lightning, precipitation, drought, heatwave, cold waves and tropical cyclones. We highlight the potential of deep learning, such as its ability to capture complex patterns and non-linear relationships. Additionally, we discuss the limitations of current approaches and highlight future directions for advancements in the field of meteorology. The insights gained from this systematic review are crucial for the scientific community to make informed decisions and mitigate the impacts of extreme weather events

    Remote Sensing of Precipitation: Volume 2

    Get PDF
    Precipitation is a well-recognized pillar in global water and energy balances. An accurate and timely understanding of its characteristics at the global, regional, and local scales is indispensable for a clearer understanding of the mechanisms underlying the Earth’s atmosphere–ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises a primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne

    Assimilation of Satellite-Based Snow Cover and Freeze/Thaw Observations Over High Mountain Asia

    Get PDF
    Toward qualifying hydrologic changes in the High Mountain Asia (HMA) region, this study explores the use of a hyper-resolution (1 km) land data assimilation (DA) framework developed within the NASA Land Information System using the Noah Multi-parameterization Land Surface Model (Noah-MP) forced by the meteorological boundary conditions from Modern-Era Retrospective analysis for Research and Applications, Version 2 data. Two different sets of DA experiments are conducted: (1) the assimilation of a satellite-derived snow cover map (MOD10A1) and (2) the assimilation of the NASA MEaSUREs landscape freeze/thaw product from 2007 to 2008. The performance of the snow cover assimilation is evaluated via comparisons with available remote sensing-based snow water equivalent product and ground-based snow depth measurements. For example, in the comparison against ground-based snow depth measurements, the majority of the stations (13 of 14) show slightly improved goodness-of-fit statistics as a result of the snow DA, but only four are statistically significant. In addition, comparisons to the satellite-based land surface temperature products (MOD11A1 and MYD11A1) show that freeze/thaw DA yields improvements (at certain grid cells) of up to 0.58 K in the root-mean-square error (RMSE) and 0.77 K in the absolute bias (relative to model-only simulations). In the comparison against three ground-based soil temperature measurements along the Himalayas, the bias and the RMSE in the 0–10 cm soil temperature are reduced (on average) by 10 and 7%, respectively. The improvements in the top layer of soil estimates also propagate through the deeper soil layers, where the bias and the RMSE in the 10–40 cm soil temperature are reduced (on average) by 9 and 6%, respectively. However, no statistically significant skill differences are observed for the freeze/thaw DA system in the comparisons against ground-based surface temperature measurements at mid-to-low altitude. Therefore, the two proposed DA schemes show the potential of improving the predictability of snow mass, surface temperature, and soil temperature states across HMA, but more ground-based measurements are still required, especially at high-altitudes, in order to document a more statistically significant improvement as a result of the two DA schemes

    Remote Sensing of Precipitation: Part II

    Get PDF
    Precipitation is a well-recognized pillar in the global water and energy balances. The accurate and timely understanding of its characteristics at the global, regional and local scales is indispensable for a clearer insight on the mechanisms underlying the Earth’s atmosphere-ocean complex system. Precipitation is one of the elements that is documented to be greatly affected by climate change. In its various forms, precipitation comprises the primary source of freshwater, which is vital for the sustainability of almost all human activities. Its socio-economic significance is fundamental in managing this natural resource effectively, in applications ranging from irrigation to industrial and household usage. Remote sensing of precipitation is pursued through a broad spectrum of continuously enriched and upgraded instrumentation, embracing sensors which can be ground-based (e.g., weather radars), satellite-borne (e.g., passive or active space-borne sensors), underwater (e.g., hydrophones), aerial, or ship-borne. This volume hosts original research contributions on several aspects of remote sensing of precipitation, including applications which embrace the use of remote sensing in tackling issues such as precipitation estimation, seasonal characteristics of precipitation and frequency analysis, assessment of satellite precipitation products, storm prediction, rain microphysics and microstructure, and the comparison of satellite and numerical weather prediction precipitation products

    Vegetation Dynamics Revealed by Remote Sensing and Its Feedback to Regional and Global Climate

    Get PDF
    This book focuses on some significant progress in vegetation dynamics and their response to climate change revealed by remote sensing data. The development of satellite remote sensing and its derived products offer fantastic opportunities to investigate vegetation changes and their feedback to regional and global climate systems. Special attention is given in the book to vegetation changes and their drivers, the effects of extreme climate events on vegetation, land surface albedo associated with vegetation changes, plant fingerprints, and vegetation dynamics in climate modeling

    Validation et dĂ©sagrĂ©gation de l’humiditĂ© du sol estimĂ©e par le satellite SMOS en zones agricoles et forestiĂšres des Prairies canadiennes

    Get PDF
    RĂ©sumĂ© : Le satellite Soil Moisture and Ocean Salinity (SMOS), lancĂ© en novembre 2009, est le premier satellite en mode passif opĂ©rant en bande-L. Cette frĂ©quence est considĂ©rĂ©e comme optimale pour estimer l’humiditĂ© du sol. SMOS est destinĂ© Ă  cartographier l’humiditĂ© de la couche 0-5 cm du sol Ă  l’échelle globale, avec une prĂ©cision attendue infĂ©rieure Ă  0,04 m3/m3, une rĂ©pĂ©titivitĂ© temporelle infĂ©rieure Ă  3 jours et une rĂ©solution spatiale d’environ 40 km. L’objectif de cette thĂšse est de valider l’humiditĂ© du sol de SMOS sur des sites agricoles et forestiers situĂ©s au Canada, et de contribuer au dĂ©veloppement de mĂ©thodes de dĂ©sagrĂ©gation de l’humiditĂ© du sol estimĂ©e par SMOS dans le but d’exploiter ces donnĂ©es dans les Ă©tudes Ă  l’échelle locale telle qu’en agriculture. Les donnĂ©es de la campagne de terrain CanEx-SM10, effectuĂ©e sur un site agricole (Kenaston) et un site forestier (BERMS) situĂ©s Ă  Saskatchewan, et celles de la campagne SMAPVEX12, effectuĂ©e sur un site majoritairement agricole (Winnipeg) situĂ© au Manitoba, sont utilisĂ©es. Les donnĂ©es d’humiditĂ© du sol de SMOS ont montrĂ© une amĂ©lioration de la version v.309 Ă  la version v.551. La version 551 des donnĂ©es d’humiditĂ© du sol de SMOS se compare mieux aux mesures in situ que les autres versions, aussi bien sur les sites agricoles que sur le site forestier. Sur les sites agricoles, l’humiditĂ© du sol de SMOS a montrĂ© une bonne corrĂ©lation avec les mesures au sol, particuliĂšrement avec la version 551 (R ≄ 0,58, en modes ascendant et descendant), ainsi qu’une certaine sensibilitĂ© Ă  la pluviomĂ©trie. NĂ©anmoins, SMOS sous-estime l’humiditĂ© du sol en gĂ©nĂ©ral. Cette sous-estimation est moins marquĂ©e sur le site de Kenaston en mode descendant (|biais| ≈ 0,03 m3/m3, avec la version v.551). Sur le site forestier, en raison de la densitĂ© de la vĂ©gĂ©tation, les algorithmes d’estimation de l’humiditĂ© du sol Ă  partir des mesures SMOS ne sont pas encore efficaces, malgrĂ© les amĂ©liorations apportĂ©es dans la version v.551. Par ailleurs, sur le site agricole de Kenaston et le site forestier de BERMS, les donnĂ©es d’humiditĂ© du sol de SMOS ont montrĂ©, gĂ©nĂ©ralement, de meilleures performances par rapport aux produits d’humiditĂ© du sol d’AMSR-E/NSIDC, AMSR-E/VUA et ASCAT/SSM. DISaggregation based on Physical And Theoretical scale Change (DISPATCH), un algorithme de dĂ©sagrĂ©gation Ă  base physique, est utilisĂ© pour dĂ©sagrĂ©ger Ă  1 km de rĂ©solution spatiale l’humiditĂ© du sol de SMOS (40 km de rĂ©solution) sur les deux sites agricoles situĂ©s Ă  Kenaston et Ă  Winnipeg. DISPATCH est basĂ© sur l’efficacitĂ© d’évaporation du sol (SEE) estimĂ©e Ă  partir des donnĂ©es optique/ thermique de MODIS, et un modĂšle linĂ©aire/non-linĂ©aire liant l’efficacitĂ© d’évaporation et l’humiditĂ© du sol Ă  l’échelle locale. Sur un site prĂ©sentant une bonne dynamique spatiale et temporelle de l’humiditĂ© du sol (le site de Winnipeg au cours de la campagne de terrain SMAPVEX12), les rĂ©sultats de DISPATCH obtenus avec le modĂšle linĂ©aire sont lĂ©gĂšrement meilleurs (R = 0,81 ; RMSE = 0.05 m3/m3 et pente = 0,52, par rapport aux mesures in situ) comparĂ©s aux rĂ©sultats obtenus avec le modĂšle non-linĂ©aire (R = 0,72 ; RMSE = 0.06 m3/m3 et pente = 0,61, par rapport aux mesures in situ). La prĂ©cision de l’humiditĂ© du sol dĂ©rivĂ©e de DISPATCH, en se basant sur les deux modĂšles linĂ©aire et non linĂ©aire, dĂ©croit quand l’humiditĂ© du sol Ă  grande Ă©chelle croĂźt. Cette Ă©tude a montrĂ©, Ă©galement, que DISPATCH peut ĂȘtre gĂ©nĂ©ralisĂ© sur des sites particuliĂšrement humides (le site de Kenaston au cours de la campagne de terrain CanEx-SM10). Cependant, en conditions humides, les rĂ©sultats dĂ©rivĂ©s avec le modĂšle non-linĂ©aire (R > 0,70, RMSE = 0,04 m3/m3 et pente ≈ 0,80, par rapport aux valeurs d’humiditĂ© du sol dĂ©rivĂ©es des mesures aĂ©roportĂ©es de la tempĂ©rature de brillance en bande L) ont montrĂ© de meilleures performances comparĂ©es Ă  ceux dĂ©rivĂ©s avec le modĂšle linĂ©aire (R > 0,73, RMSE = 0,08 m3/m3 et pente > 1.5, par rapport aux valeurs d’humiditĂ© du sol dĂ©rivĂ©es des mesures aĂ©roportĂ©es de la tempĂ©rature de brillance en bande L). Ceci est dĂ» Ă  une sous-estimation systĂ©matique de la limite sĂšche Tsmax. Par ailleurs, l’humiditĂ© du sol dĂ©sagrĂ©gĂ©e prĂ©sente une forte sensibilitĂ© à〖 Ts〗_max, particuliĂšrement avec le modĂšle linĂ©aire. Une approche simple a Ă©tĂ© proposĂ©e pour amĂ©liorer l’estimation de〖 Ts〗_max, dans des zones particuliĂšrement humides. Elle a permis de rĂ©duire l’impact de l’incertitude sur〖 Ts〗_max dans le processus de dĂ©sagrĂ©gation. Avec 〖 Ts〗_max amĂ©liorĂ©e, le modĂšle linaire aboutit Ă  de meilleurs rĂ©sultats (R > 0,72, RMSE = 0,04 m3/m3 et pente ≈ 0,80, par rapport aux valeurs d’humiditĂ© du sol estimĂ©es Ă  partir des mesures aĂ©roportĂ©es de la tempĂ©rature de brillance en bande-L) que le modĂšle non-linĂ©aire (R > 0,64, RMSE = 0,05 m3/m3 et pente ≈ 0,3, par rapport aux valeurs d’humiditĂ© du sol estimĂ©es Ă  partir des mesures aĂ©roportĂ©es de la tempĂ©rature de brillance en bande-L). BasĂ© sur des donnĂ©es optiques/ thermiques de MODIS, DISPATCH n’est pas applicable pour les journĂ©es nuageuses. Pour surmonter cette limitation, une nouvelle mĂ©thode a Ă©tĂ© proposĂ©e. Elle consiste Ă  combiner DISPATCH avec le schĂ©ma de surface Canadian Land Surface Scheme (CLASS). Les donnĂ©es d’humiditĂ© du sol Ă  1 km de rĂ©solution dĂ©rivĂ©es de DISPATCH pour les journĂ©es non nuageuses sont utilisĂ©es pour calibrer les simulations de CLASS disponibles continuellement aux heures de passage de SMOS. Une approche de calibration basĂ©e sur la correction de la pente entre les valeurs d’humiditĂ© du sol dĂ©rivĂ©es de CLASS et les valeurs d’humiditĂ© du sol dĂ©rivĂ©es de DISPATCH (donnĂ©es de rĂ©fĂ©rence) a Ă©tĂ© mise au point. Les rĂ©sultats montrent que les donnĂ©es d’humiditĂ© du sol Ă  1 km de rĂ©solution dĂ©rivĂ©es de cette nouvelle approche pour les journĂ©es nuageuses se comparent bien aux mesures in situ (R = 0,80 ; biais = -0,01 m3/m3 et pente = 0,74). Pour les journĂ©es non nuageuses, les valeurs d’humiditĂ© du sol dĂ©rivĂ©es de DISPATCH seul se comparent mieux aux mesures in situ que les valeurs dĂ©rivĂ©es en combinant DISPATCH Ă  CLASS.Abstract : The Soil Moisture and Ocean Salinity (SMOS), launched in November 2009, is the first passive microwave satellite operating in L band which is considered as optimal for soil moisture estimation. It is designed to provide global soil moisture maps at 0 – 5 cm layer from soil surface with a targeted accuracy of 0.04 m3 / m3, revisit time of less than 3 days anda spatial resolution of about 40 km. The objective of this thesis is to validate SMOS soil moisture data over agricultural and forested sites located in Canada, and to contribute to the development of SMOS downscaling methods in order to exploit these data in local scale studies such as agriculture. The data used are collected during the CanEX-SM10 field campaign, conducted over an agricultural site (Kenaston) and a forested site (BERMS) located in Saskatchewan, and during SMAPVEX12 field campaign conducted over a mostly agricultural area (Winnipeg) located in Manitoba. SMOS soil moisture data showed an improvement from the processor versions 309 to 551. Version 551 was found to be closer and more correlated to ground measurements over both agricultural and forested sites. For the agricultural sites, SMOS soil moisture showed high correlation coefficient with ground data especially with version 551(R ≄ 0.58, for ascending and descending overpasses), as well as a certain sensitivity to rainfall events. However, the SMOS soil moisture values were underestimated compared with ground measurements. This underestimation is less pronounced for the descending overpass over the Kenaston site (|bias| viii ≈ 0.03 m3/m3, for version v.551). For the forested site, due to the vegetation density, the SMOS soil moisture estimation algorithms were not very efficient despite the improvements brought to version 551. Moreover, over the agricultural site of Kenaston and the forested site of BERMS, SMOS soil moisture data showed, in general, good performances compared to AMSR-E/NSIDC, AMSR-E/VUA and ASCAT/SSM soil moisture products. DISaggregation based on Physical And Theoretical scale Change (DISPATCH), a physically-based downscaling algorithm, was used to downscale at 1-km spatial resolution the SMOS soil moisture estimates (40-km resolution) over the agricultural sites located in Kenaston and Winnipeg. DISPATCH is based on the Soil Evaporative Efficiency (SEE) derived from optical/thermal MODIS data, and a linear/non-linear model linking the Soil Evaporative Efficiency to the near-surface soil moisture at local scale. Over a site with a good spatial and temporal dynamics of soil moisture (such as Winnipeg’s site during the SMAPVEX12 field campaign), slightly better results were obtained with DISPATCH based on the linear model (R = 0.81, RMSE = 0.05 m3 /m3 and slope = 0.52, with respect to ground data) compared to results obtained from the non-linear model (R = 0.72, RMSE = 0.06 m3 /m3 and slope = 0.61, with respect to ground data). The accuracy of the DISPATCH-derived soil moisture, using both linear and non-linear models, decreases when the large-scale soil moisture increases. This study also showed, also, that DISPATCH can be generalized for very wet soil conditions (Kenaston’s site during the CanEX-SM10 field campaign). However, under wet soil conditions, better results were obtained with DISTACH based on the nonlinear (R > 0.70, RMSE = 0.04 m3/m3 and slope ≈ 0.80, with respect to the estimated soil moisture form L-band airborne brightness temperature) compared to results obtained with ix DISPATCH based on the linear model (R > 0.73, RMSE = 0.08 m3/m3 and slope > 1.5, with respect to the estimated soil moisture form L-band airborne brightness temperature). This is due to a systematic underestimation of the dry edge Tsmax. Furthermore, the downscaling results were found to be very sensitive to , particularly with the linear model. A simple approach was proposed to improve the estimation of Tsmax under very wet soil conditions. It allowed reducing the impact of uncertainty in the disaggregation process. Using the improved Tsmax value, better results were obtained with the linear model (R > 0.72, RMSE = 0.04 m3/m3 and slope ≈ 0.80, with respect to the estimated soil moisture form L-band airborne brightness temperature) compared to the non-linear model (R > 0.64, RMSE = 0.05m3/m3 and slope ≈ 0.3, with respect to the estimated soil moisture form L-band airborne brightness temperature). Based on optical/thermal MODIS data, DISPATCH is not applicable for cloudy days. To overcome this limitation, a new method was proposed. It involves the combination of DISPATCH with the Canadian Land Surface Scheme (CLASS). DISPATCH-derived soil moisture data for cloud-free days are used to calibrate CLASS soil moisture simulations which are continually available at SMOS overpasses times. A calibration approach based on slope correction between the CLASS-derived and DISPATCH-derived (reference data) soil moisture datasets is considered. Results showed that soil moisture values derived from this newly developed method during cloudy days compare well with in situ data (R = 0.80, RMSE = 0.07 m3/m3 and slope = 0.73). For no-cloudy days, DISTATCH-derived soil moisture data are closer to in situ data than those derived when combining DISPATCH with CLASS

    Evaluation de la ressource en eau associée au manteau neigeux sur le Mont Liban à partir d'observations et de la modélisation

    Get PDF
    Les ressources en eau du Liban sont soumises Ă  une pression croissante due au dĂ©veloppement Ă©conomique, Ă  la croissance dĂ©mographique, Ă  la gestion non-durable des ressources en eau et au changement climatique. Les montagnes du Mont et Anti-Liban sont des chĂąteaux d'eau naturels pour le Liban car elles augmentent les prĂ©cipitations par le soulĂšvement orographique des masses d'air. En raison de l'influence du climat mĂ©diterranĂ©en, la plupart des prĂ©cipitations au-dessus de 1200 m a.s.l. tombe sous la forme de neige en hiver. Par consĂ©quent, la fonte des neiges contribue de façon importante au bilan hydrique national. En particulier, la fonte des neiges du Mont-Liban alimente les rĂ©seaux d'eau souterraine karstiques, qui fournissent des ressources en eau essentielle pour la rĂ©gion cĂŽtiĂšre. MalgrĂ© l'importance du manteau neigeux au Liban, sa variabilitĂ© spatiale et temporelle est insuffisament observĂ©e si bien que sa contribution au dĂ©bit des fleuve et des sources reste mĂ©connue. L'objectif de ce travail est de rĂ©duire ce manque de connaissance en utilisant des mesures in situ, des observations satellite et de la modĂ©lisation du manteau neigeux. 1. Nous prĂ©sentons d'abord une revue de la littĂ©rature sur les processus nivo- hydrologiques dans les rĂ©gions montagneuses mĂ©diterranĂ©ennes. De nombreuses Ă©tudes - principalement aux Etats-Unis de l'Ouest et dans les montagnes au sud de l'Europe - soulignent l'impact fort de la variabilitĂ© interannuelle du climat mĂ©diterranĂ©en sur la dynamique du manteau neigeux. Le rayonnement solaire Ă©levĂ© est un facteur important du bilan Ă©nergĂ©tique du manteau neigeux, mais la contribution des flux de chaleur est plus forte Ă  la fin de la saison nivale. La sublimation de la neige et la densification rapide sont des processus importants dans ce contexte. Les approches hybrides combinant des donnĂ©es de stations mĂ©tĂ©orologiques et la tĂ©lĂ©dĂ©tection optique de la surface enneigĂ©e Ă  travers la modĂ©lisation sont recommandĂ©es pour compenser l'absence d'observations spatialisĂ©es du forçage mĂ©tĂ©orologique. 2. Ensuite, nous prĂ©sentons un ensemble original de donnĂ©es sur le manteau neigeux au Mont-Liban pour la pĂ©riode 2013-2016. Nous avons recueilli des observations sur le terrain de la hauteur de neige (HS), de l'Ă©quivalent en eau de neige (SWE) et de la densitĂ© de neige entre 1300 et 2900 m d'altitude sur le flanc occidental du Mont-Liban. De plus, des donnĂ©es mĂ©tĂ©orologiques continues ont Ă©tĂ© acquises par trois stations mĂ©tĂ©orologiques automatiques situĂ©es dans la partie enneigĂ©e du Mont-Liban. Le produit MODIS a Ă©tĂ© utilisĂ© pour calculer la superficie couverte par la neige dans trois bassins hydrographiques couverts par les observations in situ. Nous remarquons la grande variabilitĂ© de HS et SWE et une densitĂ© Ă©levĂ©e du manteau neigeux. Nous trouvons une corrĂ©lation significative entre HS et SWE qui peut ĂȘtre utile pour rĂ©duire la quantitĂ© de travail de terrain en vue d'un suivi opĂ©rationnel futur. 3. GrĂące Ă  ces donnĂ©es, nous avons mis en place un modĂšle distribuĂ© du manteau neigeux sur le Mont-Liban Ă  une rĂ©solution de 100 m. Le modĂšle est validĂ© Ă  diffĂ©rentes Ă©chelles en utilisant les observations de SWE, densitĂ©, HS et SCA. Une simulation avec des modifications trĂšs limitĂ©es du paramĂ©trage par dĂ©faut permet de capturer correctement la plupart des observations. Cette simulation permet donc d'estimer l'Ă©volution du SWE et la fonte dans les trois bassins Ă©tudiĂ©s entre 2013 et 2016. Cette recherche a mis en Ă©vidence l'importance de rĂ©aliser simultanĂ©ment des mesures sur le terrain et des observations mĂ©tĂ©orologiques continues pour mieux apprĂ©hender les processus physiques qui contrĂŽlent l'Ă©volution du manteau neigeux sur le Mont-Liban. Enfin, l'influence du transport de la neige par le vent et des dĂ©pĂŽts de poussiĂšre sur la fonte des neiges reste Ă  Ă©valuer en perspective de ce travail.Lebanon's water resources are under increasing pressure due to economic development, demographic growth, unsustainable water resource management, and climate change. The Mount- and Anti-Lebanon Mountains are natural water towers for Lebanon as they play an important role in enhancing orographic precipitation. Due to the influence of the Mediterranean climate, most precipitation above 1200 m a.s.l. falls as snow during winter season. As a result, snowmelt is an important contributor to the national water balance. In particular, snowmelt from Mount-Lebanon feeds the karst groundwater systems, which provide key water resources to the coastal region. Despite the importance of the snow cover in the Lebanese mountains, the actual snowpack spatial and temporal variability and its contribution to the spring and river discharges in Lebanon remains poorly constrained. The objective of this work is to reduce this lack of knowledge using a combination of in situ measurements, remote sensing observations and modelling of the snowpack in Mount-Lebanon. 1. We first present an extensive review of the literature about the snow hydrological processes in Mediterranean-like mountain regions. Many studies - mainly from Western USA and Southern Europe mountains - emphasize the strong impact of the interannual Mediterranean climate variability on the snowpack dynamics. The high incoming solar radiation is an important driver of the snowpack energy balance, but the contribution of heat fluxes is stronger at the end of the snow season. Snow sublimation and rapid densification are important processes to consider. Hybrid approaches combining weather station data with optical remote sensing of the snow extent through modelling are recommended to tackle the lack of spatially-distributed observations of the meteorological forcing. 2. Then, we introduce an original dataset on the snow cover in Mount-Lebanon for the period 2013-2016. We collected field observations of the snow height (HS), snow water equivalent (SWE), and snow density between 1300 and 2900 m a.s.l. in the western slope of Mount-Lebanon. In addition, continuous meteorological data were acquired by three automatic weather stations located in the snow dominated region of Mount-Lebanon. The MODIS snow product was used to compute the daily snow cover area in three snow dominated basins. We find that HS and SWE have large variances and that snow density is high. The strong correlation between HS and SWE may be useful to reduce the amount of field work for future operational monitoring. 3. Using these data we set up a distributed snowpack energy balance in the Mount- Lebanon at 100 m resolution. The model is validated at different scales using the observed SWE, snow density, HS and SCA. A simulation with very limited adjustments to the default parameterization is found to correctly capture most of the observations. This simulation allows the estimation of the SWE evolution and snow melt in the three study basins between 2013 and 2016. This research highlighted the importance of conducting simultaneous field surveys and meteorological observations to gain insights into the physical processes driving snowpack evolution in Mount-Lebanon. Finally, the influence of snow erosion by wind and the influence of dust deposits on snowmelt, remains less known, and are warrant for future research
    corecore