4,144 research outputs found

    An Adaptive Overcurrent Coordination Scheme to Improve Relay Sensitivity and Overcome Drawbacks due to Distributed Generation in Smart Grids

    Get PDF
    Distributed Generation (DG) brought new challenges for protection engineers since standard relay settings of traditional system may no longer function properly under increasing presence of DG. The extreme case is coordination loss between primary and backup relays. The directional overcurrent relay (DOCR) which is the most implemented protective device in the electrical network also suffers performance degradation in presence of DG. Therefore, this paper proposes the mitigation of DG impact on DOCR coordination employing adaptive protection scheme (APS) using differential evolution algorithm (DE) while improving overall sensitivity of relays . The impacts of DG prior and after the application of APS are presented based on interconnected 6 bus and IEEE 14 bus system. As a consequence, general sensitivity improvement and mitigation scheme is proposed

    A review of networked microgrid protection: Architectures, challenges, solutions, and future trends

    Get PDF
    The design and selection of advanced protection schemes have become essential for the reliable and secure operation of networked microgrids. Various protection schemes that allow the correct operation of microgrids have been proposed for individual systems in different topologies and connections. Nevertheless, the protection schemes for networked microgrids are still in development, and further research is required to design and operate advanced protection in interconnected systems. The interconnection of these microgrids in different nodes with various interconnection technologies increases the fault occurrence and complicates the protection operation. This paper aims to point out the challenges in developing protection for networked microgrids, potential solutions, and research areas that need to be addressed for their development. First, this article presents a systematic analysis of the different microgrid clusters proposed since 2016, including several architectures of networked microgrids, operation modes, components, and utilization of renewable sources, which have not been widely explored in previous review papers. Second, the paper presents a discussion on the protection systems currently available for microgrid clusters, current challenges, and solutions that have been proposed for these systems. Finally, it discusses the trend of protection schemes in networked microgrids and presents some conclusions related to implementation

    Multi-agent based protection scheme using current-only directional overcurrent relays for looped/meshed distribution systems

    Get PDF
    The complexity of the design of the protection system using directional over current relays, for modern power distribution systems has been increased due to the looped/meshed operation and the penetration of distributed generations. Finding a reliable and efficient protection scheme that can be easily implemented in these distribution systems is a major challenge. An efficient solution could be the use of artificial intelligent-based multi-agent systems. This paper proposes a novel distributed intelligent based multi-agent protection scheme, which makes use of current-only directional over current relays as agents for detecting and locating faults and isolating faulty areas (lines/busbars) in the distribution systems. All agents can make on-board decisions by exchanging binary data, and do not need a control centre, so the safety of the protection system against one-point failures and cyber-attacks is increased. The proposed scheme does not need to exchange analogue data, and, therefore, it prevents the high bandwidth communication links. Moreover, it is free from the traditional coordination between relays. This scheme is implemented on the IEEE-14 bus and IEEE-30 bus test systems with the distributed generations and several scenarios have been simulated to evaluate its performance

    Fault Detection and Protection Strategy for Islanded Inverter-Based Microgrids

    Get PDF

    Over current protection of distribution system with impact of solar and wind generation using DIgSIlent power factory

    Get PDF
    The utilization of renewable resources has been growing very fast worldwide recently to manage the increasing energy gap, but it also raises some challenges like protection issues, transient stability issues and security issues in the power system operation. Mainly, wind and solar photovoltaic renewable power generation sources are account for bulky renewable energy share. The transients in power systems including renewables are reduced and have recently attracted wide attention. The impact of renewables generation on power system transients should be effectively analyzed and evaluated to improve power system reliability, stability, operation and security. DIgSILENT Power Factory software is more powerful and useful for providing phasor of fundamental power frequency components better than other existing software’s; therefore, DIgSILENT Power Factory is proposed for modeling and analysis of the system.&nbsp

    State-of-the-Art Renewable Energy in Korea

    Get PDF
    Nowadays, renewable energy plays an important role in our daily lives. This Special Issue addresses the current trend in the use of renewable energy in South Korea. The first aspect is a renewable-based power system, where both main and ancillary supplies are sourced from renewable energies; the second aspect is a distribution network for renewable energy; and the last aspect is a nanogrid network technology. Renewable energy requires many innovations over existing power infrastructure and regulation. These articles show the changing trend in various sectors in Korea

    Rate of Change of Direct-Axis Current Component Protection Scheme for Inverter-Based Islanded Microgrids

    Get PDF
    Rapid growth in the utilization of the inverter-interfaced distributed energy resources (IIDERs) in microgrids has brought new challenges in the network protection area. Microgrid protection specifically becomes a concern during operation in the islanded mode. There is a considerable reduction in fault current levels in this mode compared to when the microgrid is connected to the grid, which makes conventional algorithms operate with significant delay or, in many cases, not even pick up the fault. This paper proposes a protection algorithm based on the rate of change of direct-axis current component ( id ) to protect inverter-based microgrids (IBMGs). The proposed algorithm is applicable for microgrids with centralized protection as well as those deploying a decentralized approach equipped with the unit protection of the relevant lines. Photovoltaic (PV) systems and battery energy storage systems (BESS) are taken into account in this research and modeled precisely to capture the high-frequency effects of power-electronic converters and investigate the response of IIDERs in fault conditions. The effectiveness of the proposed protection method will be evaluated by applying symmetrical and asymmetrical faults in different locations with different resistances simulated on a test IBMG system in PSCAD/EMTDC environment. In addition, protection robustness against non-fault conditions such as a sudden increase in load levels, environmental uncertainties, and noisy measurement conditions will be scrutinized

    Protection concepts in distribution networks with decentralised energy resources

    Get PDF
    Die stetig steigende Anbindung von dezentralen Energieerzeugern (DER) an Mittel- (MS) und Niederspannungsnetze (NS) fordert eine Analyse der bestehenden Netzschutzkonzepte. Die Beeinflussung der Netzschutzkonzepte ist abhängig davon, wie die DER an das Mittelspannungsnetz angebunden sind. Die vorliegende Arbeit konzentriert sich auf die Analyse von Beeinflussungen durch kleine DER, die an das Mittelspannungsnetz ĂĽber einen Umrichter angebunden sind. Das erste Problem, das in dieser Arbeit untersucht ist, ist die Beeinflussung der unterschiedlichen Schutzalgorithmen durch hohe Anteile von Harmonischen. Diese werden verursacht durch die steigende Zahl elektrischer Geräte, sowohl auf der Verbraucherseite als auch auf der Seite der Energieerzeuger. Die Beeinflussung, entsprechend der Norm IEC 61000-3–2, wurde an unterschiedlichen Typen von Netzschutzsystemen untersucht. Die getesteten Distanzschutzalgorithmen basierten auf konventionellen Methoden zu Berechnung der Impedanz wie: SinusAlgorithmen, Algorithmen basierend auf der Leitungs-Differentialgleichung erster oder zweiter Ordnung, Filteralgorithmen fĂĽr Berechnung komplexer Zeiger, und Algorithmen, die auf kĂĽnstliche Intelligenz basieren, wie harmonisch aktivierte neuronale Netze. Die unterschiedlichen Typen von Netzschutzprinzipien, die untersucht wurden sind: Ăśberstrom, Distanz und Differenzial. Einige Untersuchungen wurden auch im Netzschutzlabor der Universität durchgefĂĽhrt. Bei beiden Tests konnte nachgewiesen werden, dass die heutigen state-of-the-art Netzschutzsysteme durch Harmonische entsprechend IEC 61000-3–2, praktisch nicht beeinflusst werden. Der zweite Problemkreis der in dieser Arbeit diskutiert wird sind die Anforderungen, welche die Anbindung von DER an das Netz, an moderne Netzschutzsysteme stellen. Einige Beispiele illustrieren die Lage der Energieversorgung der Zukunft und zeigen Selektivitätsprobleme auf, sollten nur konventionelle Netzschutzsysteme benutzt werden. In dieser Arbeit wird ein neues Schutzkonzept fĂĽr Mittelspannungsnetze mit hohem Anteil an DER vorgestellt und analysiert. Das Konzept beruht auf der neuen Norm fĂĽr „Substation Automatisation System - IEC 61850“ und einem Netzschutz-Managementsystem. Die Methode der zusätzlichen Signal-Einspeisung wurde ebenfalls vorgestellt. Die Basis eines effizienten Netzschutz-Managementsystems ist das Wissen vom Verhalten des Systems in normalen Betrieb und unter Fehlerbedingungen. Die Computer- und Internettechnologie, die moderne Kommunikation, der interdisziplinäre Datenaustausch stellen ganz neue Anforderungen an die Wissensbasis energietechnischer Ingenieure. Mit dem Ziel neue Medien in der Ingenieurausbildung einzusetzen ist, im Rahmen dieser Arbeit ein E-learning Kurs entwickelt worden. Dabei ermöglicht das Internet neue Methoden zur Wissensvermittlung zu entwickeln. Die Unabhängigkeit von Zeit und Ort, die groĂźe Anzahl von Lehrmöglichkeiten und die Online-Diskussionen sind nur einige zu nennende Vorteile. In dieser Arbeit ist die Idee zur Realisierung sowie Ergebnisse des E-learning Kurses im Bereich digitaler Netzschutztechnik, als Erweiterung der konventionellen Lehrveranstaltung präsentiert worden. Dieser Kurs wird den Studenten der Universität in einem speziell gestalteten Multimedialabor angeboten. Es besteht via Internet die Möglichkeit den Kurses z.B. zu Hause zur Wiederholung und PrĂĽfungsvorbereitung nochmals zu bearbeiten.    The continuously rising implementation of DER in the distribution network requests analyses of the present network protection concepts. Depending on the type of connection to the network, the influences of the DER on the network protection systems vary. This dissertation concentrates on the analyses of the influence of implementation of small DER, which are connected to the network via an inverter. The first problem discussed in this dissertation is the influence of high level of harmonics on the protection devices. The rising implementation of power electronic devices into the network, both on the side of the energy generation and energy consumption, leads to a high level of injected harmonics into the network. The influence of a high amount of harmonics, according to the Standard IEC 61000-3–2, on different types of algorithms implemented in different types of protection devices was investigated using a test network. The tested algorithms implemented in the distance protection devices were based on conventional methods such as steady state algorithms, algorithms using the differential equation of first or second order written for the protected line, algorithms based on the filter approach, and on the “new” methods using artificial intelligence i.e.: parametrical estimation and harmonic activated neuronal networks. The different types of protection devices that were investigated were based on the principle of over-current (definite-current and inverse time), distance and differential. Some of the tests were conducted in the protection technique laboratory at the university. From both tests (simulation and practical) it is concluded that the state-of-the-art protection devices are insensitive to harmonics according to the allowed level by the standard IEC 61000-3–2. The tendency of today’s protection technology engineers lies in searching for ways to shorten of the calculation time of the algorithms. The second problem discussed is the challenge set to the network protection systems in the distribution networks with implemented DER. A few examples illustrate the situation of the energy supply of the future illustrate the problems of lack of protection with the present protection concepts. In this sense, this work presents and analyses a protectionconcept in distribution networks with DER, using the substation automation system and the protection management system based on the new standard IEC 61850 for communication networks in substations. The method of using an additional signal injection as additional criteria for the presented network protection concept is also discussed. The basis for efficient protection system management is the knowledge of power system performance under fault and normal operation (service) conditions as well as the switchgear interfaces. This requires a proper knowledge of power system engineering. With a changeable power system infrastructure, the protection system management becomes a real challenge to the network protection experts. Computer- and internet technology, modern serial communications, sharing of data with other disciplines and a trend towards system engineering require a broader knowledge and close co-operation with others, beside the protection system engineers. With the goal of spreading the knowledge of network protection systems, in the frames of this work a special e-learning course was realised. The internet provides new possibilities for gaining and spreading knowledge. The time and place independence, the high amount of possibilities for knowledge sources and on line discussions are just a few of the possibilities. In this work, the idea, the realisation and the implementation of this new way of teaching and studying digital network protection alongside the conventional way are presented as well. An importance is also given to the feed back of the user of the e-learning course. This course is offered to the students at the university in a specially realised multimedia laboratory and used for gaining knowledge in the area of network protection technique. The possibility of using the course at home for re-capitulation of the taught material and for self-test is also possible, by simply logging on to the e-learning course. This course could also be used by engineers who want to refresh their knowledge in the form of a fast (self) training.   &nbsp
    • …
    corecore