8,070 research outputs found

    Experimental analysis of computer system dependability

    Get PDF
    This paper reviews an area which has evolved over the past 15 years: experimental analysis of computer system dependability. Methodologies and advances are discussed for three basic approaches used in the area: simulated fault injection, physical fault injection, and measurement-based analysis. The three approaches are suited, respectively, to dependability evaluation in the three phases of a system's life: design phase, prototype phase, and operational phase. Before the discussion of these phases, several statistical techniques used in the area are introduced. For each phase, a classification of research methods or study topics is outlined, followed by discussion of these methods or topics as well as representative studies. The statistical techniques introduced include the estimation of parameters and confidence intervals, probability distribution characterization, and several multivariate analysis methods. Importance sampling, a statistical technique used to accelerate Monte Carlo simulation, is also introduced. The discussion of simulated fault injection covers electrical-level, logic-level, and function-level fault injection methods as well as representative simulation environments such as FOCUS and DEPEND. The discussion of physical fault injection covers hardware, software, and radiation fault injection methods as well as several software and hybrid tools including FIAT, FERARI, HYBRID, and FINE. The discussion of measurement-based analysis covers measurement and data processing techniques, basic error characterization, dependency analysis, Markov reward modeling, software-dependability, and fault diagnosis. The discussion involves several important issues studies in the area, including fault models, fast simulation techniques, workload/failure dependency, correlated failures, and software fault tolerance

    JVM-hosted languages: They talk the talk, but do they walk the walk?

    Get PDF
    The rapid adoption of non-Java JVM languages is impressive: major international corporations are staking critical parts of their software infrastructure on components built from languages such as Scala and Clojure. However with the possible exception of Scala, there has been little academic consideration and characterization of these languages to date. In this paper, we examine four nonJava JVM languages and use exploratory data analysis techniques to investigate differences in their dynamic behavior compared to Java. We analyse a variety of programs and levels of behavior to draw distinctions between the different programming languages. We brieïŹ‚y discuss the implications of our ïŹndings for improving the performance of JIT compilation and garbage collection on the JVM platform

    A user perspective of quality of service in m-commerce

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2004 Springer VerlagIn an m-commerce setting, the underlying communication system will have to provide a Quality of Service (QoS) in the presence of two competing factors—network bandwidth and, as the pressure to add value to the business-to-consumer (B2C) shopping experience by integrating multimedia applications grows, increasing data sizes. In this paper, developments in the area of QoS-dependent multimedia perceptual quality are reviewed and are integrated with recent work focusing on QoS for e-commerce. Based on previously identified user perceptual tolerance to varying multimedia QoS, we show that enhancing the m-commerce B2C user experience with multimedia, far from being an idealised scenario, is in fact feasible if perceptual considerations are employed

    Fault Injection for Embedded Microprocessor-based Systems

    Get PDF
    Microprocessor-based embedded systems are increasingly used to control safety-critical systems (e.g., air and railway traffic control, nuclear plant control, aircraft and car control). In this case, fault tolerance mechanisms are introduced at the hardware and software level. Debugging and verifying the correct design and implementation of these mechanisms ask for effective environments, and Fault Injection represents a viable solution for their implementation. In this paper we present a Fault Injection environment, named FlexFI, suitable to assess the correctness of the design and implementation of the hardware and software mechanisms existing in embedded microprocessor-based systems, and to compute the fault coverage they provide. The paper describes and analyzes different solutions for implementing the most critical modules, which differ in terms of cost, speed, and intrusiveness in the original system behavio

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    Function-as-a-Service Performance Evaluation: A Multivocal Literature Review

    Get PDF
    Function-as-a-Service (FaaS) is one form of the serverless cloud computing paradigm and is defined through FaaS platforms (e.g., AWS Lambda) executing event-triggered code snippets (i.e., functions). Many studies that empirically evaluate the performance of such FaaS platforms have started to appear but we are currently lacking a comprehensive understanding of the overall domain. To address this gap, we conducted a multivocal literature review (MLR) covering 112 studies from academic (51) and grey (61) literature. We find that existing work mainly studies the AWS Lambda platform and focuses on micro-benchmarks using simple functions to measure CPU speed and FaaS platform overhead (i.e., container cold starts). Further, we discover a mismatch between academic and industrial sources on tested platform configurations, find that function triggers remain insufficiently studied, and identify HTTP API gateways and cloud storages as the most used external service integrations. Following existing guidelines on experimentation in cloud systems, we discover many flaws threatening the reproducibility of experiments presented in the surveyed studies. We conclude with a discussion of gaps in literature and highlight methodological suggestions that may serve to improve future FaaS performance evaluation studies.Comment: improvements including postprint update

    Big Data Testing Techniques: Taxonomy, Challenges and Future Trends

    Full text link
    Big Data is reforming many industrial domains by providing decision support through analyzing large data volumes. Big Data testing aims to ensure that Big Data systems run smoothly and error-free while maintaining the performance and quality of data. However, because of the diversity and complexity of data, testing Big Data is challenging. Though numerous research efforts deal with Big Data testing, a comprehensive review to address testing techniques and challenges of Big Data is not available as yet. Therefore, we have systematically reviewed the Big Data testing techniques evidence occurring in the period 2010-2021. This paper discusses testing data processing by highlighting the techniques used in every processing phase. Furthermore, we discuss the challenges and future directions. Our findings show that diverse functional, non-functional and combined (functional and non-functional) testing techniques have been used to solve specific problems related to Big Data. At the same time, most of the testing challenges have been faced during the MapReduce validation phase. In addition, the combinatorial testing technique is one of the most applied techniques in combination with other techniques (i.e., random testing, mutation testing, input space partitioning and equivalence testing) to find various functional faults through Big Data testing.Comment: 32 page
    • 

    corecore