2,775 research outputs found

    Evaluating the impact of adopting a component-based approach within the automotive domain

    Get PDF
    Component-based technology applied to the control system of production machinery is one of the new research developments in the automotive sector. Although it is important to evaluate the technical aspects of this new paradigm, an appreciation of the impact from the business and human aspects is equally important to the stakeholders in the industry. However, the current evaluation approaches do not offer a method to capture and analyse the component-based technology that is simple to use and produces results that are readily understood by the stakeholders involved in the process. This study is based upon a research project at Loughborough University to look into the effect of the implementation of a component-based control system for production machinery in the automotive sector (referred to as the component-based approach) and is focused on the business and the human aspects of the approach. [Continues.

    A review of e-maintenance capabilities and challenges

    Get PDF
    Within the era of e-manufacturing and e-business, e-maintenance provides the opportunity for a new maintenance generation. E-maintenance integrates existing telemaintenance principles, with web-services and modern e-collaboration principles. Collaboration allows not only to share and exchange information but also knowledge and (e)-intelligence. This paper outlines the basic capabilities provided by e-maintenance to companies as well as describes emerging challenges to benefit from these new operational improvement opportunitie

    Distribution of machine information using Blackboard designed component for remote monitoring of reconfigurable manufacturing systems

    Get PDF
    A blackboard-based design for a system component called the "Broadcaster" is described in this paper. It supports remote monitoring of reconfigurable manufacturing systems using a novel system architecture coupled with the Component-Based system paradigm. The design of this component has been evaluated using a case study on a web services-enabled test rig funded by the Ford Motor Company, U. K. The test rig has been implemented using a fully distributed control device called FTB, designed by the Schneider Electric Company. Evaluation of this component has been carried out using three scenario test cases which demonstrate the potentials offered when deploying this solution to a real production environment. The system component not only operates in a heterogeneous reconfigurable manufacturing environment, offering a vendor-independent solution to monitoring machines, but it also supports remote monitoring of the machines throughout their development and management lifecycles

    Augmented reality in support of intelligent manufacturing – A systematic literature review

    Get PDF
    Industry increasingly moves towards digitally enabled ‘smart factories’ that utilise the internet of things (IoT) to realise intelligent manufacturing concepts like predictive maintenance or extensive machine to machine communication. A core technology to facilitate human integration in such a system is augmented reality (AR), which provides people with an interface to interact with the digital world of a smart factory. While AR is not ready yet for industrial deployment in some areas, it is already used in others. To provide an overview of research activities concerning AR in certain shop floor operations, a total of 96 relevant papers from 2011 to 2018 are reviewed. This paper presents the state of the art, the current challenges, and future directions of manufacturing related AR research through a systematic literature review and a citation network analysis. The results of this review indicate that the context of research concerning AR gets increasingly broader, especially by addressing challenges when implementing AR solutions.No funding was received

    Innovation in manufacturing through digital technologies and applications: Thoughts and Reflections on Industry 4.0

    Get PDF
    The rapid pace of developments in digital technologies offers many opportunities to increase the efficiency, flexibility and sophistication of manufacturing processes; including the potential for easier customisation, lower volumes and rapid changeover of products within the same manufacturing cell or line. A number of initiatives on this theme have been proposed around the world to support national industries under names such as Industry 4.0 (Industrie 4.0 in Germany, Made-in-China in China and Made Smarter in the UK). This book presents an overview of the state of art and upcoming developments in digital technologies pertaining to manufacturing. The starting point is an introduction on Industry 4.0 and its potential for enhancing the manufacturing process. Later on moving to the design of smart (that is digitally driven) business processes which are going to rely on sensing of all relevant parameters, gathering, storing and processing the data from these sensors, using computing power and intelligence at the most appropriate points in the digital workflow including application of edge computing and parallel processing. A key component of this workflow is the application of Artificial Intelligence and particularly techniques in Machine Learning to derive actionable information from this data; be it real-time automated responses such as actuating transducers or informing human operators to follow specified standard operating procedures or providing management data for operational and strategic planning. Further consideration also needs to be given to the properties and behaviours of particular machines that are controlled and materials that are transformed during the manufacturing process and this is sometimes referred to as Operational Technology (OT) as opposed to IT. The digital capture of these properties and behaviours can then be used to define so-called Cyber Physical Systems. Given the power of these digital technologies it is of paramount importance that they operate safely and are not vulnerable to malicious interference. Industry 4.0 brings unprecedented cybersecurity challenges to manufacturing and the overall industrial sector and the case is made here that new codes of practice are needed for the combined Information Technology and Operational Technology worlds, but with a framework that should be native to Industry 4.0. Current computing technologies are also able to go in other directions than supporting the digital ‘sense to action’ process described above. One of these is to use digital technologies to enhance the ability of the human operators who are still essential within the manufacturing process. One such technology, that has recently become accessible for widespread adoption, is Augmented Reality, providing operators with real-time additional information in situ with the machines that they interact with in their workspace in a hands-free mode. Finally, two linked chapters discuss the specific application of digital technologies to High Pressure Die Casting (HDPC) of Magnesium components. Optimizing the HPDC process is a key task for increasing productivity and reducing defective parts and the first chapter provides an overview of the HPDC process with attention to the most common defects and their sources. It does this by first looking at real-time process control mechanisms, understanding the various process variables and assessing their impact on the end product quality. This understanding drives the choice of sensing methods and the associated smart digital workflow to allow real-time control and mitigation of variation in the identified variables. Also, data from this workflow can be captured and used for the design of optimised dies and associated processes

    Adaptive automation assembly: Identifying system requirements for technical efficiency and worker satisfaction

    Get PDF
    Manual assembly work systems bring high flexibility but low productivity in comparison to fully automated systems. To increase productivity but maintain flexibility, future systems need to incorporate greater levels of automation which complement or augment the capabilities of the human operators who provide the manual work. Future systems should be designed for social and economic sustainability within fluctuating conditions and for adaptive utilisation of operators’ individual capabilities to maintain levels of productivity and personal satisfaction. To successfully create such systems with greater adaptivity and interactivity between people and technology a comprehensive understanding of design requirements is needed; the current problem is that there is no standard valid framework. The work described in this paper employed a three-component investigation to identify the various key requirements that are needed to form such a design framework for future human-automation assembly systems. This involves separate activities with different methodologies involving literature reviews, surveys and business case analysis to define use case scenarios and requirements for creating adaptive automation assembly system demonstrators. The different methodological approaches and results for all of the three component studies are described, along with conclusions and implications for further research work and for industry in general

    Operator interfaces for the lifecycle support of component based automation systems

    Get PDF
    Current manufacturing automation systems (specifically the powertrain sector) have been facing challenges with constant pressures of globalisation, environmental concerns and ICT (Information and Communication Technology) innovations. These challenges instigate new demands for shorter product lifecycles and require customised products to be manufactured as efficiently as possible. Manufacturing systems must therefore be agile to remain competitive by supporting frequent reconfigurations involving distributed engineering activities. [Continues.

    Smart specialization for building up a regional innovation agenda: the case of San Luis Potosí, Mexico

    Get PDF
    The state of San Luis Potosí (SLP) is divided into four regions: “Altiplano, Centro, Huasteca and Media”. A large socioeconomic inequality is perceived among the regions, this is especially observed when comparing Centro with the other regions, mainly because Centro region shows greater economic dynamism and has a great amount of companies, educational institutions and research centers, which contributes to lower its socioeconomic lag. In order to reduce the social inequality and the economic development gap of SLP, a project for the construction of innovation agendas with a regional focus was formulated applying RIS3 methodology.Therefore, this article has as its main objective, to present and analyze the results of this project, through the identification of regional economic potential and their areas of smart specialization, as well as international technological trends in those areas. As an important component, a governance mechanism was organized in the four regions used to build consensus and legitimate the RIS3 process. In the framework of triple- helix participatory workshops, a portfolio of priority innovation projects was defined. This article offers an analysis of favorable factors and obstacles faced during the process; a series of recommendations for the promotion of regional innovation agendas (RIA) plus brief conclusions
    corecore