1,884 research outputs found

    Insights in the cost of continuous broadband Internet on trains for multi-service deployments by multiple actors with resource sharing

    Get PDF
    The economic viability of broadband Internet services on trains has always been proved difficult, mainly due to a high investment cost and low willingness to pay by train passengers, but also due to unused opportunities such as non-passenger services (e.g. train performance monitoring, crew services) and optimization of the resources consumed to offer Internet services. Evaluating opportunities to improve the return on investment is therefore essential towards profitability of the business case. By efficiently sharing resources amongst services, costs can be pooled over several services in order to reduce the investment cost per service. Current techno-economic evaluation models are hard to apply to cost allocation in a multi-service deployment with multiple actors and resource sharing. We therefore propose a new evaluation model and apply it to a deployment of Internet services on trains. We start with a detailed analysis of the technical architecture required to provide Internet access on trains. For each component, we investigate the impact by the different services on resource consumption. The proposed techno-economic evaluation model is then applied in order to calculate the total cost and allocate the used and unused resources to the appropriate services. In a final step, we calculate the business case for each stakeholder involved in the offering of these services. This paper details the proposed model and reports on our findings for a multi-service deployment by multiple actors. Results show important benefits for the case that considers the application of resource sharing in a multi-service, multi-actor scenario and the proposed model produces insights in the contributors to the cost per service and the unused amount of a resource. In addition, ex-ante insights in the cost flows per involved actor are obtained and the model can easily be extended to include revenue flows to evaluate the profitability per actor. As a consequence, the proposed model should be considered to support and stimulate upcoming multi-actor investment decisions for Internet-based multi-service offerings on-board trains with resource sharing

    Opportunistic Third-Party Backhaul for Cellular Wireless Networks

    Full text link
    With high capacity air interfaces and large numbers of small cells, backhaul -- the wired connectivity to base stations -- is increasingly becoming the cost driver in cellular wireless networks. One reason for the high cost of backhaul is that capacity is often purchased on leased lines with guaranteed rates provisioned to peak loads. In this paper, we present an alternate \emph{opportunistic backhaul} model where third parties provide base stations and backhaul connections and lease out excess capacity in their networks to the cellular provider when available, presumably at significantly lower costs than guaranteed connections. We describe a scalable architecture for such deployments using open access femtocells, which are small plug-and-play base stations that operate in the carrier's spectrum but can connect directly into the third party provider's wired network. Within the proposed architecture, we present a general user association optimization algorithm that enables the cellular provider to dynamically determine which mobiles should be assigned to the third-party femtocells based on the traffic demands, interference and channel conditions and third-party access pricing. Although the optimization is non-convex, the algorithm uses a computationally efficient method for finding approximate solutions via dual decomposition. Simulations of the deployment model based on actual base station locations are presented that show that large capacity gains are achievable if adoption of third-party, open access femtocells can reach even a small fraction of the current market penetration of WiFi access points.Comment: 9 pages, 6 figure

    Evaluating the Impact of Broadband Access and Internet Use in a Small Underserved Rural Community

    Get PDF
    Having adequate access to the internet at home enhances quality-of-life for households and facilitates economic and social opportunities. Despite increased investment in response to the COVID-19 pandemic, millions of households in the rural United States still lack adequate access to high-speed internet. In this study, we evaluate a wireless broadband network deployed in Turney, a small, underserved rural community in northwest Missouri. In addition to collecting survey data before and after this internet intervention, we collected pre-treatment and post-treatment survey data from comparison communities to serve as a control group. Due to technical constraints, some of Turney\u27s interested participants could not connect to the network, creating an additional comparison group. These comparisons suggest two primary findings, (1) changes in using the internet for employment, education, and health could not be directly attributed to the internet intervention, and (2) the internet intervention was associated with benefits stemming from the ability to use multiple devices at once. This study has implications for the design of future broadband evaluation studies, particularly those examining underserved rather than unserved communities. Recommendations for identifying appropriate outcome variables, executing recruitment strategies, and selecting the timing of surveys are made

    Evaluating the Impact of Broadband Access and Internet Use in a Small Underserved Rural Community

    Get PDF
    Having adequate access to the internet at home enhances quality-of-life for households and facilitates economic and social opportunities. Despite increased investment in response to the COVID-19 pandemic, millions of households in the rural United States still lack adequate access to high-speed internet. In this study, we evaluate a wireless broadband network deployed in Turney, a small, underserved rural community in northwest Missouri. In addition to collecting survey data before and after this internet intervention, we collected pre-treatment and post-treatment survey data from comparison communities to serve as a control group. Due to technical constraints, some of Turney\u27s interested participants could not connect to the network, creating an additional comparison group. These comparisons suggest two primary findings, (1) changes in using the internet for employment, education, and health could not be directly attributed to the internet intervention, and (2) the internet intervention was associated with benefits stemming from the ability to use multiple devices at once. This study has implications for the design of future broadband evaluation studies, particularly those examining underserved rather than unserved communities. Recommendations for identifying appropriate outcome variables, executing recruitment strategies, and selecting the timing of surveys are made

    Evaluating Performance of Data Mining Classification Algorithms in Diagnosing for offloading data traffic in mobile networks

    Get PDF
    Mobile data traffic is significantly increased year by year due to a number of factors including new smart devices, new applications such as M2M, the so-called “always-on” applications and services etc. In addition the recent studies tell us that the forecasts for mobile data traffic in near future will be tenfold higher, while the revenue for this market is expected to be increased only twofold. This trend raised a number of challenges for the mobile network operators (MNOs) in the world and in our region. Different technical and commercial solutions are discussed and developed and / or under developing. The first idea how to cope with high data traffic is to increase the network capacities. Even this is a direct traditional way as a technical solution it is too expensive and time consuming. Alternative ways to cope with data traffic in order to satisfy consumer demand and to keep key performance indicators are under developing. Some solutions in place are linked with traffic management tools such as data optimization, throttling, filtering, caching, video compression etc. In addition, new pricing policies and the adoption of the appropriate business models in new era of mobile data traffic are in the process. On top of the ways mentioned above or alternatively, Wi-Fi is considered as a simple way of data traffic off-load in mobile networks. In this article, we will identify the positive aspects of Wi-Fi offload versus other traffic management tools and draw some conclusions. We will give some recommendations how MNOs improve the situation for high data traffic through Wi-Fi offload solution, how Wi-Fi offload is related with other commercial aspects and quality of service in order to meet the customer satisfaction

    Current State Of Wireless Information Technology In The Construction Industry In Ohio

    Get PDF
    Construction projects are increasingly getting complex and fragmented in nature, yet contractors persistently face shortened project durations and reduced budgets. Timely delivery of accurate and reliable information among all project participants is critical and important because information is the foundation upon which decisions are made and projects are estimated, planned, monitored, and controlled. Recent developments in technology promise to introduce efficiencies that were not previously available to the industry. This study seeks to identify the current state of wireless information technology through the analysis of quantitative data from a web-based survey that represents the views of the respondents on the usage and interest in wireless technology. The study suggests that the level of interest in wireless technology is much higher than the level of use. Wireless technology enhanced the skills, productivity, and customer service of the participants, but did not improve their ability to negotiate projects and monitor project costs. The respondents believe that the return on investment is not a barrier; slow download speeds and durability are the largest barriers keeping people from using wireless technology
    • …
    corecore