446 research outputs found

    Improving Relation Extraction From Unstructured Genealogical Texts Using Fine-Tuned Transformers

    Get PDF
    Though exploring one’s family lineage through genealogical family trees can be insightful to developing one’s identity, this knowledge is typically held behind closed doors by private companies or require expensive technologies, such as DNA testing, to uncover. With the ever-booming explosion of data on the world wide web, many unstructured text documents, both old and new, are being discovered, written, and processed which contain rich genealogical information. With access to this immense amount of data, however, entails a costly process whereby people, typically volunteers, have to read large amounts of text to find relationships between people. This delays having genealogical information be open and accessible to all. This thesis explores state-of-the-art methods for relation extraction across the genealogical and biomedical domains and bridges new and old research by proposing an updated three-tier system for parsing unstructured documents. This system makes use of recently developed and massively pretrained transformers and fine-tuning techniques to take advantage of these deep neural models’ inherent understanding of English syntax and semantics for classification. With only a fraction of labeled data typically needed to train large models, fine-tuning a LUKE relation classification model with minimal added features can identify genealogical relationships with macro precision, recall, and F1 scores of 0.880, 0.867, and 0.871, respectively, in data sets with scarce (∼10%) positive relations. Further- more, with the advent of a modern coreference resolution system utilizing SpanBERT embeddings and a modern named entity parser, our end-to-end pipeline can extract and correctly classify relationships within unstructured documents with macro precision, recall, and F1 scores of 0.794, 0.616, and 0.676, respectively. This thesis also evaluates individual components of the system and discusses future improvements to be made

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    Clinical text data in machine learning: Systematic review

    Get PDF
    Background: Clinical narratives represent the main form of communication within healthcare providing a personalized account of patient history and assessments, offering rich information for clinical decision making. Natural language processing (NLP) has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid development of NLP tools by leveraging large amounts of text data. Objective: The main aim of this study is to provide systematic evidence on the properties of text data used to train machine learning approaches to clinical NLP. We also investigate the types of NLP tasks that have been supported by machine learning and how they can be applied in clinical practice. Methods: Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed, a multi-faceted interface, to perform a literature search against MEDLINE. We identified a total of 110 relevant studies and extracted information about the text data used to support machine learning, the NLP tasks supported and their clinical applications. The data properties considered included their size, provenance, collection methods, annotation and any relevant statistics. Results: The vast majority of datasets used to train machine learning models included only hundreds or thousands of documents. Only 10 studies used tens of thousands of documents with a handful of studies utilizing more. Relatively small datasets were utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data for manual annotation as a strategy for minimizing the annotation effort while maximizing predictive performance of the model. Supervised learning was successfully used where clinical codes integrated with free text notes into electronic health records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable due to sensitive nature of data considered. Beside the small volume, training data were typically sourced from a small number of institutions, thus offering no hard evidence about the transferability of machine learning models. The vast majority of studies focused on the task of text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care improvement, resource management and surveillance. Conclusions: We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which does not require data annotation

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail
    • …
    corecore