722 research outputs found

    Effect of Location Accuracy and Shadowing on the Probability of Non-Interfering Concurrent Transmissions in Cognitive Ad Hoc Networks

    Get PDF
    Cognitive radio ad hoc systems can coexist with a primary network in a scanning-free region, which can be dimensioned by location awareness. This coexistence of networks improves system throughput and increases the efficiency of radio spectrum utilization. However, the location accuracy of real positioning systems affects the right dimensioning of the concurrent transmission region. Moreover, an ad hoc connection may not be able to coexist with the primary link due to the shadowing effect. In this paper we investigate the impact of location accuracy on the concurrent transmission probability and analyze the reliability of concurrent transmissions when shadowing is taken into account. A new analytical model is proposed, which allows to estimate the resulting secure region when the localization uncertainty range is known. Computer simulations show the dependency between the location accuracy and the performance of the proposed topology, as well as the reliability of the resulting secure region

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    Lower bounds on the estimation performance in low complexity quantize-and-forward cooperative systems

    Get PDF
    Cooperative communication can effectively mitigate the effects of multipath propagation fading by using relay channels to provide spatial diversity. A relaying scheme suitable for half-duplex devices is the quantize-and-forward (QF) protocol, in which the information received from the source is quantized at the relay before being forwarded to the destination. In this contribution, the Cramer-Rao bound (CRB) is obtained for the case where all channel parameters in a QF system are estimated at the destination. The CRB is a lower bound (LB) on the mean square estimation error (MSEE) of an unbiased estimate and can thus be used to benchmark practical estimation algorithms. Additionally, the modified Cramer-Rao bound (MCRB) is also presented, which is a looser but computationally less complex bound. An importance sampling technique is developed to speed up the computation of the MCRBs, and the MSEE performance of a practical estimation algorithm is compared with the (M)CRBs. We point out that the parameters of the source-destination and relay-destination channels can be accurately estimated but that inevitably the source-relay channel estimate is poor when the instantaneous SNR on the relay-destination channel is low; however, in this case, the decoder performance is not affected by the inaccurate source-relay channel estimate

    Performance limits of cooperative energy detection in fading environments

    Get PDF
    In this paper, the performance of energy detector-based spectrum sensor networks is examined under the constraints of the IEEE 802.22 draft specification. Additive white Gaussian noise (AWGN) channels are first considered, and a closed form solution for sample complexity is derived for networks of any size. Rayleigh, Nakagami and Rice fading channel models are also examined, with numerical results demonstrating the effect of these models on the required sample complexity for varying numbers of cooperating nodes. Based on these results, the relationship between the sample complexity for AWGN, Rayleigh and Nakagami channels is examined. Through data fitting, an approximate model is derived, allowing the sample complexity for Rayleigh and Nakagami channels to be computed easily. The model is shown to be accurate across a range of practical values

    Graph Neural Networks-Based User Pairing in Wireless Communication Systems

    Full text link
    Recently, deep neural networks have emerged as a solution to solve NP-hard wireless resource allocation problems in real-time. However, multi-layer perceptron (MLP) and convolutional neural network (CNN) structures, which are inherited from image processing tasks, are not optimized for wireless network problems. As network size increases, these methods get harder to train and generalize. User pairing is one such essential NP-hard optimization problem in wireless communication systems that entails selecting users to be scheduled together while minimizing interference and maximizing throughput. In this paper, we propose an unsupervised graph neural network (GNN) approach to efficiently solve the user pairing problem. Our proposed method utilizes the Erdos goes neural pipeline to significantly outperform other scheduling methods such as k-means and semi-orthogonal user scheduling (SUS). At 20 dB SNR, our proposed approach achieves a 49% better sum rate than k-means and a staggering 95% better sum rate than SUS while consuming minimal time and resources. The scalability of the proposed method is also explored as our model can handle dynamic changes in network size without experiencing a substantial decrease in performance. Moreover, our model can accomplish this without being explicitly trained for larger or smaller networks facilitating a dynamic functionality that cannot be achieved using CNNs or MLPs

    Energy-Efficiency of Cooperative MIMO Wireless Systems

    Get PDF
    Increasing focus on global warming has challenged the scientific community to develop ways to mitigate its adverse effects. This is more so important as different technologies become an integral part of daily human life. Mobile wireless networks and mobile devices form a significant part of these technologies. It is estimated that there are over four billion mobile phone subscribers worldwide and this number is still growing as more people get connected in developing countries [1]. In addition to the growing number of subscribers, there is an explosive growth in high data applications among mobile terminal users. This has put increased demand on the mobile network in terms of energy needed to support both the growth in subscribers and higher data rates. The mobile wireless industry therefore has a significant part to play in the mitigation of global warming effects. To achieve this goal, there is a need to develop and design energy efficient communication schemes for deployment in future networks and upgrades to existing networks. This is not only done in the wireless communication infrastructure but also in mobile terminals. In this thesis a practical power consumption model which includes circuit power consumption from the different components in a transceiver chain is analyzed. This is of great significance to practical system design when doing energy consumption and energy efficiency analysis. The proposed power consumption model is then used to evaluate the energy efficiency in the context of cooperative Multiple Input Multiple Output (MIMO) systems

    A Space-Time Correlation Model for MRC Receivers in Rayleigh Fading Channels

    Get PDF
    This paper presents a statistical model for maximum ratio combining (MRC) receivers in Rayleigh fading channels enabled with a temporal combining process. This means that the receiver effectively combines spatial and temporal branch components. Therefore, the signals that will be processed by the MRC receiver are collected not only across different antennas (space), \mbox{but also} at different instants of time. This suggests the use of a retransmission, repetition or space-time coding algorithm that forces the receiver to store signals in memory at different instants of time. Eventually, these stored signals are combined after a predefined or dynamically optimized number of time-slots or retransmissions. The model includes temporal correlation features in addition to the space correlation between the signals of the different components or branches of the MRC receiver. The derivation uses a frequency domain approach (using the characteristic function of the random variables) to obtain closed-form expressions of the statistics of the post-processing signal-to-noise ratio (SNR) under the assumption of equivalent correlation in time and equivalent correlation in space. The described methodology paves the way for the reformulation of other statistical functions as a frequency-domain polynomial root analysis problem. This is opposed to the infinite series approach that is used in the conventional methodology using directly the probability density function (PDF). The results suggest that temporal diversity is a good complement to receivers with limited spatial diversity capabilities. It is also shown that this additional operation could be maximized when the temporal diversity is adaptive (i.e., activated by thresholds of SNR), thus leading to a better resource utilization.info:eu-repo/semantics/publishedVersio

    Wireless Sensor Networks and TSCH: a compromise between Reliability, Power Consumption and Latency

    Get PDF
    7siReliability, power consumption, and latency are the three main performance indicators of wireless sensor networks. Time slotted channel hopping (TSCH) is a promising technique introduced in the IEEE 802.15.4 standard that performs some steps ahead in the direction of the final dream to meet all the previous requirements at the same time. In this article, a simple and effective mathematical model is presented for TSCH that, starting from measurements performed on a real testbed, permits to characterize both the network and the surrounding environment. To better characterize power consumption, an experimental measurement campaign was purposely performed on OpenMote B devices. The model, which was checked against a real 6TiSCH implementation, can be employed to predict network behaviour when configuration parameters are varied, in such a way to satisfy different application contexts. Results show that, when one of the three above indices is privileged, unavoidably there is a worsening of the others.openopenScanzio, Stefano; Vakili, Mohammad Ghazi; Cena, Gianluca; Demartini, Claudio Giovanni; Montrucchio, Bartolomeo; Valenzano, Adriano; Zunino, ClaudioScanzio, Stefano; Vakili, Mohammad Ghazi; Cena, Gianluca; Demartini, Claudio Giovanni; Montrucchio, Bartolomeo; Valenzano, Adriano; Zunino, Claudi
    corecore