37,485 research outputs found

    Online Modified Greedy Algorithm for Storage Control under Uncertainty

    Full text link
    This paper studies the general problem of operating energy storage under uncertainty. Two fundamental sources of uncertainty are considered, namely the uncertainty in the unexpected fluctuation of the net demand process and the uncertainty in the locational marginal prices. We propose a very simple algorithm termed Online Modified Greedy (OMG) algorithm for this problem. A stylized analysis for the algorithm is performed, which shows that comparing to the optimal cost of the corresponding stochastic control problem, the sub-optimality of OMG is bounded and approaches zero in various scenarios. This suggests that, albeit simple, OMG is guaranteed to have good performance in some cases; and in other cases, OMG together with the sub-optimality bound can be used to provide a lower bound for the optimal cost. Such a lower bound can be valuable in evaluating other heuristic algorithms. For the latter cases, a semidefinite program is derived to minimize the sub-optimality bound of OMG. Numerical experiments are conducted to verify our theoretical analysis and to demonstrate the use of the algorithm.Comment: 14 page version of a paper submitted to IEEE trans on Power System

    Constrained Deep Networks: Lagrangian Optimization via Log-Barrier Extensions

    Full text link
    This study investigates the optimization aspects of imposing hard inequality constraints on the outputs of CNNs. In the context of deep networks, constraints are commonly handled with penalties for their simplicity, and despite their well-known limitations. Lagrangian-dual optimization has been largely avoided, except for a few recent works, mainly due to the computational complexity and stability/convergence issues caused by alternating explicit dual updates/projections and stochastic optimization. Several studies showed that, surprisingly for deep CNNs, the theoretical and practical advantages of Lagrangian optimization over penalties do not materialize in practice. We propose log-barrier extensions, which approximate Lagrangian optimization of constrained-CNN problems with a sequence of unconstrained losses. Unlike standard interior-point and log-barrier methods, our formulation does not need an initial feasible solution. Furthermore, we provide a new technical result, which shows that the proposed extensions yield an upper bound on the duality gap. This generalizes the duality-gap result of standard log-barriers, yielding sub-optimality certificates for feasible solutions. While sub-optimality is not guaranteed for non-convex problems, our result shows that log-barrier extensions are a principled way to approximate Lagrangian optimization for constrained CNNs via implicit dual variables. We report comprehensive weakly supervised segmentation experiments, with various constraints, showing that our formulation outperforms substantially the existing constrained-CNN methods, both in terms of accuracy, constraint satisfaction and training stability, more so when dealing with a large number of constraints

    Optimality of the Maximum Likelihood estimator in Astrometry

    Full text link
    The problem of astrometry is revisited from the perspective of analyzing the attainability of well-known performance limits (the Cramer-Rao bound) for the estimation of the relative position of light-emitting (usually point-like) sources on a CCD-like detector using commonly adopted estimators such as the weighted least squares and the maximum likelihood. Novel technical results are presented to determine the performance of an estimator that corresponds to the solution of an optimization problem in the context of astrometry. Using these results we are able to place stringent bounds on the bias and the variance of the estimators in close form as a function of the data. We confirm these results through comparisons to numerical simulations under a broad range of realistic observing conditions. The maximum likelihood and the weighted least square estimators are analyzed. We confirm the sub-optimality of the weighted least squares scheme from medium to high signal-to-noise found in an earlier study for the (unweighted) least squares method. We find that the maximum likelihood estimator achieves optimal performance limits across a wide range of relevant observational conditions. Furthermore, from our results, we provide concrete insights for adopting an adaptive weighted least square estimator that can be regarded as a computationally efficient alternative to the optimal maximum likelihood solution. We provide, for the first time, close-form analytical expressions that bound the bias and the variance of the weighted least square and maximum likelihood implicit estimators for astrometry using a Poisson-driven detector. These expressions can be used to formally assess the precision attainable by these estimators in comparison with the minimum variance bound.Comment: 24 pages, 7 figures, 2 tables, 3 appendices. Accepted by Astronomy & Astrophysic

    Lagrange Coded Computing: Optimal Design for Resiliency, Security and Privacy

    Get PDF
    We consider a scenario involving computations over a massive dataset stored distributedly across multiple workers, which is at the core of distributed learning algorithms. We propose Lagrange Coded Computing (LCC), a new framework to simultaneously provide (1) resiliency against stragglers that may prolong computations; (2) security against Byzantine (or malicious) workers that deliberately modify the computation for their benefit; and (3) (information-theoretic) privacy of the dataset amidst possible collusion of workers. LCC, which leverages the well-known Lagrange polynomial to create computation redundancy in a novel coded form across workers, can be applied to any computation scenario in which the function of interest is an arbitrary multivariate polynomial of the input dataset, hence covering many computations of interest in machine learning. LCC significantly generalizes prior works to go beyond linear computations. It also enables secure and private computing in distributed settings, improving the computation and communication efficiency of the state-of-the-art. Furthermore, we prove the optimality of LCC by showing that it achieves the optimal tradeoff between resiliency, security, and privacy, i.e., in terms of tolerating the maximum number of stragglers and adversaries, and providing data privacy against the maximum number of colluding workers. Finally, we show via experiments on Amazon EC2 that LCC speeds up the conventional uncoded implementation of distributed least-squares linear regression by up to 13.43Ă—13.43\times, and also achieves a 2.36Ă—2.36\times-12.65Ă—12.65\times speedup over the state-of-the-art straggler mitigation strategies

    Inexact Convex Relaxations for AC Optimal Power Flow: Towards AC Feasibility

    Full text link
    Convex relaxations of AC optimal power flow (AC-OPF) problems have attracted significant interest as in several instances they provably yield the global optimum to the original non-convex problem. If, however, the relaxation is inexact, the obtained solution is not AC-feasible. The quality of the obtained solution is essential for several practical applications of AC-OPF, but detailed analyses are lacking in existing literature. This paper aims to cover this gap. We provide an in-depth investigation of the solution characteristics when convex relaxations are inexact, we assess the most promising AC feasibility recovery methods for large-scale systems, and we propose two new metrics that lead to a better understanding of the quality of the identified solutions. We perform a comprehensive assessment on 96 different test cases, ranging from 14 to 3120 buses, and we show the following: (i) Despite an optimality gap of less than 1%, several test cases still exhibit substantial distances to both AC feasibility and local optimality and the newly proposed metrics characterize these deviations. (ii) Penalization methods fail to recover an AC-feasible solution in 15 out of 45 cases, and using the proposed metrics, we show that most failed test instances exhibit substantial distances to both AC-feasibility and local optimality. For failed test instances with small distances, we show how our proposed metrics inform a fine-tuning of penalty weights to obtain AC-feasible solutions. (iii) The computational benefits of warm-starting non-convex solvers have significant variation, but a computational speedup exists in over 75% of the cases
    • …
    corecore