10,508 research outputs found

    Detecting Multiple Communities Using Quantum Annealing on the D-Wave System

    Full text link
    A very important problem in combinatorial optimization is partitioning a network into communities of densely connected nodes; where the connectivity between nodes inside a particular community is large compared to the connectivity between nodes belonging to different ones. This problem is known as community detection, and has become very important in various fields of science including chemistry, biology and social sciences. The problem of community detection is a twofold problem that consists of determining the number of communities and, at the same time, finding those communities. This drastically increases the solution space for heuristics to work on, compared to traditional graph partitioning problems. In many of the scientific domains in which graphs are used, there is the need to have the ability to partition a graph into communities with the ``highest quality'' possible since the presence of even small isolated communities can become crucial to explain a particular phenomenon. We have explored community detection using the power of quantum annealers, and in particular the D-Wave 2X and 2000Q machines. It turns out that the problem of detecting at most two communities naturally fits into the architecture of a quantum annealer with almost no need of reformulation. This paper addresses a systematic study of detecting two or more communities in a network using a quantum annealer

    Communities in Networks

    Full text link
    We survey some of the concepts, methods, and applications of community detection, which has become an increasingly important area of network science. To help ease newcomers into the field, we provide a guide to available methodology and open problems, and discuss why scientists from diverse backgrounds are interested in these problems. As a running theme, we emphasize the connections of community detection to problems in statistical physics and computational optimization.Comment: survey/review article on community structure in networks; published version is available at http://people.maths.ox.ac.uk/~porterm/papers/comnotices.pd

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    Community Detection in Complex Networks

    Get PDF
    Finding communities of connected individuals in social networks is essential for understanding our society and interactions within the network. Recently attention has turned to analyse these communities in complex network systems. In this thesis, we study three challenges. Firstly, analysing and evaluating the robustness of new and existing score functions as these functions are used to assess the community structure for a given network. Secondly, unfolding community structures in static social networks. Finally, detecting the dynamics of communities that change over time. The score functions are evaluated on different community structures. The behaviour of these functions is studied by migrating nodes randomly from their community to a random community in a given true partition until all nodes will be migrated far from their communities. Then Multi-Objective Evolutionary Algorithm Based Community Detection in Social Networks (MOEA-CD) is used to capture the intuition of community identi cation with dense connections within the community and sparse with others. This algorithm redirects the design of objective functions according to the nodes' relations within community and with other communities. This new model includes two new contradictory objectives, the rst is to maximise the internal neighbours for each node within a community and the second is to minimise the maximum external links for each node within a community with respect to its internal neighbours. Both of these objectives are optimised simultaneously to nd a set of estimated Pareto-optimal solutions where each solution corresponds to a network partition. Moreover, we propose a new local heuristic search, namely, the Neighbour Node Centrality (NNC) strategy which is combined with the proposed model to improve the performance of MOEA-CD to nd a local optimal solution. We also design an algorithm which produces community structures that evolve over time. Recognising that there may be many possible community structures that ex- plain the observed social network at each time step, in contrast to existing methods, which generally treat this as a coupled optimisation problem, we formulate the prob- lem in a Hidden Markov Model framework, which allows the most likely sequence of communities to be found using the Viterbi algorithm where there are many candi- date community structures which are generated using Multi-Objective Evolutionary Algorithm. To demonstrate that our study is effective, it is evaluated on synthetic and real-life dynamic networks and it is used to discover the changing Twitter communities of MPs preceding the Brexit referendum

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    Evolutionary Computation in High Energy Physics

    Get PDF
    Evolutionary Computation is a branch of computer science with which, traditionally, High Energy Physics has fewer connections. Its methods were investigated in this field, mainly for data analysis tasks. These methods and studies are, however, less known in the high energy physics community and this motivated us to prepare this lecture. The lecture presents a general overview of the main types of algorithms based on Evolutionary Computation, as well as a review of their applications in High Energy Physics.Comment: Lecture presented at 2006 Inverted CERN School of Computing; to be published in the school proceedings (CERN Yellow Report
    • …
    corecore