187 research outputs found

    Cooperative Caching in Vehicular Networks - Distributed Cache Invalidation Using Information Freshness

    Get PDF
    Recent advances in vehicular communications has led to significant opportunities to deploy variety of applications and services improving road safety and traffic efficiency to road users. In regard to traffic management services in distributed vehicular networks, this thesis work evaluates managing storage at vehicles efficiently as cache for moderate cellular transmission costs while still achieving correct routing decision. Road status information was disseminated to oncoming traffic in the form of cellular notifications using a reporting mechanism. High transmission costs due to redundant notifications published by all vehicles following a basic reporting mechanism: Default-approach was overcome by implementing caching at every vehicle. A cooperative based reporting mechanism utilizing cache: Cooperative-approach, was proposed to notify road status while avoiding redundant notifications. In order to account those significantly relevant vehicles for decision-making process which did not actually publish, correspondingly virtual cache entries were implemented. To incorporate the real-world scenario of varying vehicular rate observed on any road, virtual cache entries based on varying vehicular rate was modeled as Adaptive Cache Management mechanism. The combinations of proposed mechanisms were evaluated for cellular transmission costs and accuracy achieved for making correct routing decision. Simulation case studies comprising varying vehicular densities and different false detection rates were conducted to demonstrate the performance of these mechanisms. Additionally, the proposed mechanisms were evaluated in different decision-making algorithms for both information freshness in changing road conditions and for robustness despite false detections. The simulation results demonstrated that the combination of proposed mechanisms was capable of achieving realistic information accuracy enough to make correct routing decision despite false readings while keeping network costs significantly low. Furthermore, using QoI-based decision algorithm in high density vehicular networks, fast adaptability to frequently changing road conditions as well as quick recovery from false notifications by invalidating them with correct notifications were indicated

    Anchor Free IP Mobility

    Get PDF
    Efficient mobility management techniques are critical in providing seamless connectivity and session continuity between a mobile node and the network during its movement. However, current mobility management solutions generally require a central entity in the network core, tracking IP address movement, and anchoring traffic from source to destination through point-to-point tunnels. Intuitively, this approach suffers from scalability limitations as it creates bottlenecks in the network, due to sub-optimal routing via the anchor point. This is often termed 'dog-leg' routing. Meanwhile, alternative anchorless, solutions are not feasible due to the current limitations of the IP semantics, which strongly tie addressing information to location. In contrast, this paper introduces a novel anchorless mobility solution that overcomes these limitations by exploiting a new path-based forwarding fabric together with emerging mechanisms from information-centric networking. These mechanisms decouple the end-system IP address from the path based data forwarding to eliminate the need for anchoring traffic through the network core; thereby, allowing flexible path calculation and service provisioning. Furthermore, by eliminating the limitation of routing via the anchor point, our approach reduces the network cost compared to anchored solutions through bandwidth saving while maintaining comparable handover delay. The proposed solution is applicable to both cellular and large-scale wireless LAN networks that aim to support seamless handover in a single operator domain scenario. The solution is modeled as a Markov-chain which applies a topological basis to describe mobility. The validity of the proposed Markovian model was verified through simulation of both random walk mobility on random geometric networks and trace information from a large-scale, city wide data set. Evaluation results illustrate a significant reduction in the total network traffic cost by 45 percent or more when using the proposed solution, compared to Proxy Mobile IPv6
    • …
    corecore