602 research outputs found

    Hydrologic and Agricultural Earth Observations and Modeling for the Water-Food Nexus

    Get PDF
    In a globalizing and rapidly-developing world, reliable, sustainable access to water and food are inextricably linked to each other and basic human rights. Achieving security and sustainability in both requires recognition of these linkages, as well as continued innovations in both science and policy. We present case studies of how Earth observations are being used in applications at the nexus of water and food security: crop monitoring in support of G20 global market assessments, water stress early warning for USAID, soil moisture monitoring for USDA's Foreign Agricultural Service, and identifying food security vulnerabilities for climate change assessments for the UN and the UK international development agency. These case studies demonstrate that Earth observations are essential for providing the data and scalability to monitor relevant indicators across space and time, as well as understanding agriculture, the hydrological cycle, and the water-food nexus. The described projects follow the guidelines for co-developing useable knowledge for sustainable development policy. We show how working closely with stakeholders is essential for transforming NASA Earth observations into accurate, timely, and relevant information for water-food nexus decision support. We conclude with recommendations for continued efforts in using Earth observations for addressing the water-food nexus and the need to incorporate the role of energy for improved food and water security assessment

    Improved Prediction of Quasi-Global Vegetation Conditions Using Remotely-Sensed Surface Soil Moisture

    Get PDF
    The added value of satellite-based surface soil moisture retrievals for agricultural drought monitoring is assessed by calculating the lagged rank correlation between remotely-sensed vegetation indices (VI) and soil moisture estimates obtained both before and after the assimilation of surface soil moisture retrievals derived from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) into a soil water balance model. Higher soil moisture/VI lag correlations imply an enhanced ability to predict future vegetation conditions using estimates of current soil moisture. Results demonstrate that the assimilation of AMSR-E surface soil moisture retrievals substantially improve the performance of a global drought monitoring system - particularly in sparsely-instrumented areas of the world where high-quality rainfall observations are unavailable

    North American Land Data Assimilation System: A Framework for Merging Model and Satellite Data for Improved Drought Monitoring

    Get PDF
    Drought is a pervasive natural climate hazard that has widespread impacts on human activity and the environment. In the United States, droughts are billion-dollar disasters, comparable to hurricanes and tropical storms and with greater economic impacts than extratropical storms, wildfires, blizzards, and ice storms combined (NCDC, 2009). Reduction of the impacts and increased preparedness for drought requires the use and improvement of monitoring and prediction tools. These tools are reliant on the availability of spatially extensive and accurate data for representing the occurrence and characteristics (such as duration and severity) of drought and their related forcing mechanisms. It is increasingly recognized that the utility of drought data is highly dependent on the application (e.g., agricultural monitoring versus water resource management) and time (e.g., short- versus long-term dryness) and space (e.g., local versus national) scales involved. A comprehensive set of drought indices that considers all components of the hydrological–ecological–human system is necessary. Because of the dearth of near-real-time in situ hydrologic data collected over large regions, modeled data are often useful surrogates, especially when combined with observations from remote sensing and in situ sources. This chapter provides an overview of drought-related activities associated with the North American Land Data Assimilation System (NLDAS), which purports to provide an incremental step toward improved drought monitoring and forecasting. The NLDAS was originally conceived to improve short-term weather forecasting by providing better land surface initial conditions for operational weather forecast models. This reflects increased recognition of the role of land surface water and energy states, such as surface temperature, soil moisture, and snowpack, to atmospheric processes via feedbacks through the coupling of the water and energy cycles. Phase I of the NLDAS (NLDAS-1; Mitchell et al., 2004) made tremendous progress toward developing an operational system that gave high-resolution land hydrologic products in near real time. The system consists of multiple land surface models (LSMs) that are driven by an observation-based meteorological data set both in real time and retrospectively. This work resulted in a series of scientific papers that evaluated the retrospective data (meteorology and model output) in terms of their ability to reflect observations of the water and energy cycles and the uncertainties in the simulations as measured by the spread among individual models (Pan et al., 2003; Robock et al., 2003; Sheffield et al., 2003; Lohmann et al., 2004; Mitchell et al., 2004; Schaake et al., 2004). These evaluations led to the implementation of significant improvements to the LSMs in the form of new model physics and adjustments to parameter values and to the methods and input meteorological data (Xia et al., 2012). The system has since expanded in scope to include model intercomparison studies, real-time monitoring, and hydrologic prediction and has inspired other activities such as high-resolution land surface modeling and global land data assimilation systems (e.g., the Global Land Data Assimilation System [GLDAS], Rodell et al., 2004; the Land Information System [LIS], Kumar et al., 2006)

    North American Land Data Assimilation System: A Framework for Merging Model and Satellite Data for Improved Drought Monitoring

    Get PDF
    Drought is a pervasive natural climate hazard that has widespread impacts on human activity and the environment. In the United States, droughts are billion-dollar disasters, comparable to hurricanes and tropical storms and with greater economic impacts than extratropical storms, wildfires, blizzards, and ice storms combined (NCDC, 2009). Reduction of the impacts and increased preparedness for drought requires the use and improvement of monitoring and prediction tools. These tools are reliant on the availability of spatially extensive and accurate data for representing the occurrence and characteristics (such as duration and severity) of drought and their related forcing mechanisms. It is increasingly recognized that the utility of drought data is highly dependent on the application (e.g., agricultural monitoring versus water resource management) and time (e.g., short- versus long-term dryness) and space (e.g., local versus national) scales involved. A comprehensive set of drought indices that considers all components of the hydrological–ecological–human system is necessary. Because of the dearth of near-real-time in situ hydrologic data collected over large regions, modeled data are often useful surrogates, especially when combined with observations from remote sensing and in situ sources. This chapter provides an overview of drought-related activities associated with the North American Land Data Assimilation System (NLDAS), which purports to provide an incremental step toward improved drought monitoring and forecasting. The NLDAS was originally conceived to improve short-term weather forecasting by providing better land surface initial conditions for operational weather forecast models. This reflects increased recognition of the role of land surface water and energy states, such as surface temperature, soil moisture, and snowpack, to atmospheric processes via feedbacks through the coupling of the water and energy cycles. Phase I of the NLDAS (NLDAS-1; Mitchell et al., 2004) made tremendous progress toward developing an operational system that gave high-resolution land hydrologic products in near real time. The system consists of multiple land surface models (LSMs) that are driven by an observation-based meteorological data set both in real time and retrospectively. This work resulted in a series of scientific papers that evaluated the retrospective data (meteorology and model output) in terms of their ability to reflect observations of the water and energy cycles and the uncertainties in the simulations as measured by the spread among individual models (Pan et al., 2003; Robock et al., 2003; Sheffield et al., 2003; Lohmann et al., 2004; Mitchell et al., 2004; Schaake et al., 2004). These evaluations led to the implementation of significant improvements to the LSMs in the form of new model physics and adjustments to parameter values and to the methods and input meteorological data (Xia et al., 2012). The system has since expanded in scope to include model intercomparison studies, real-time monitoring, and hydrologic prediction and has inspired other activities such as high-resolution land surface modeling and global land data assimilation systems (e.g., the Global Land Data Assimilation System [GLDAS], Rodell et al., 2004; the Land Information System [LIS], Kumar et al., 2006)

    Future Opportunities and Challenges in Remote Sensing of Drought

    Get PDF
    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Vegetation Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation, as summarized by Anyamba and Tucker (2012, Chapter 2). Other indices such as the Vegetation Health Index (VHI) (Kogan, 1995) were also developed during this time period and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers like AVHRR could provide for operational drought monitoring through near-daily, synoptic observations of earth’s land surface. However, the advancement of satellite remote sensing for drought monitoring was limited by the relatively few spectral bands on operational global sensors such as AVHRR, along with a relatively short observational record

    The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts

    Get PDF
    To effectively meet growing food demands, the global agronomic community will require a better understanding of factors that are currently limiting crop yields and where production can be viably expanded with minimal environmental consequences. Remote sensing can inform these analyses, providing valuable spatiotemporal information about yield-limiting moisture conditions and crop response under current climate conditions. In this paper we study correlations for the period 2003-2013 between yield estimates for major crops grown in Brazil and the Evaporative Stress Index (ESI) - an indicator of agricultural drought that describes anomalies in the actual/reference evapotranspiration (ET) ratio, retrieved using remotely sensed inputs of land surface temperature (LST) and leaf area index (LAI). The strength and timing of peak ESI-yield correlations are compared with results using remotely sensed anomalies in water supply (rainfall from the Tropical Rainfall Mapping Mission; TRMM) and biomass accumulation (LAI from the Moderate Resolution Imaging Spectroradiometer; MODIS). Correlation patterns were generally similar between all indices, both spatially and temporally, with the strongest correlations found in the south and northeast where severe flash droughts have occurred over the past decade, and where yield variability was the highest. Peak correlations tended to occur during sensitive crop growth stages. At the state scale, the ESI provided higher yield correlations for most crops and regions in comparison with TRMM and LAI anomalies. Using finer scale yield estimates reported at the municipality level, ESI correlations with soybean yields peaked higher and earlier by 10 to 25 days in comparison to TRMM and LAI, respectively. In most states, TRMM peak correlations were marginally higher on average with municipality-level annual corn yield estimates, although these estimates do not distinguish between primary and late season harvests. A notable exception occurred in the northeastern state of Bahia, where the ESI better captured effects of rapid cycling of moisture conditions on corn yields during a series of flash drought events. The results demonstrate that for monitoring agricultural drought in Brazil, value is added by combining LAI with LST indicators within a physically based model of crop water use. Published by Elsevier Inc.Embrapa Visiting Scientist Program ; Labex US, an international scientific cooperation program - Brazilian Agricultural Research Corporation - Embrapa, ; United States Department of Agriculture (USDA

    A Method for Objectively Integrating Soil Moisture Satellite Observations and Model Simulations Toward a Blended Drought Index

    Get PDF
    With satellite soil moisture (SM) retrievals becoming widely and continuously available, we aim to develop a method to objectively integrate the drought indices into one that is more accurate and consistently reliable. The datasets used in this paper include the Noah land surface modelbased SM estimations, AtmosphereLandExchangeInverse modelbased Evaporative Stress Index, and the satellite SM products from the Advanced Scatterometer, WindSat, Soil Moisture and Ocean Salinity, and Soil Moisture Operational Product System. Using the Triple Collocation Error Model (TCEM) to quantify the uncertainties of these data, we developed an optically blended drought index (BDI_b) that objectively integrates drought estimations with the lowest TCEMderived rootmeansquareerrors in this paper. With respect to the reported drought records and the drought monitoring benchmarks including the U.S. Drought Monitor, the Palmer Drought Severity Index and the standardized precipitation evapotranspiration index products, the BDI_b was compared with the sample average blending drought index (BDI_s) and the RMSEweighted average blending drought indices (BDI_w). Relative to the BDI_s and the BDI_w, the BDI_b performs more consistently with the drought monitoring benchmarks. With respect to the official drought records, the developed BDI_b shows the best performance on tracking drought development in terms of time evolution and spatial patterns of 2010Russia, 2011USA, 2013New Zealand droughts and other reported agricultural drought occurrences over the 20092014 period. These results suggest that model simulations and remotely sensed observations of SM can be objectively translated into useful information for drought monitoring and early warning, in turn can reduce drought risk and impacts

    Earth observation-based operational estimation of soil moisture and evapotranspiration for agricultural crops in support of sustainable water management

    Get PDF
    Global information on the spatio-temporal variation of parameters driving the Earth’s terrestrial water and energy cycles, such as evapotranspiration (ET) rates and surface soil moisture (SSM), is of key significance. The water and energy cycles underpin global food and water security and need to be fully understood as the climate changes. In the last few decades, Earth Observation (EO) technology has played an increasingly important role in determining both ET and SSM. This paper reviews the state of the art in the use specifically of operational EO of both ET and SSM estimates. We discuss the key technical and operational considerations to derive accurate estimates of those parameters from space. The review suggests significant progress has been made in the recent years in retrieving ET and SSM operationally; yet, further work is required to optimize parameter accuracy and to improve the operational capability of services developed using EO data. Emerging applications on which ET/SSM operational products may be included in the context specifically in relation to agriculture are also highlighted; the operational use of those operational products in such applications remains to be seen

    Future Opportunities and Challenges in Remote Sensing of Drought

    Get PDF
    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and global efforts such as the Famine and Early Warning System (FEWS), National Integrated Drought Information System (NIDIS), and Group on Earth Observations (GEO), as well as the establishment of regional drought centers (e.g., European Drought Observatory) and geospatial visualization and monitoring systems (e.g, NASA SERVIR) have been undertaken to improve drought monitoring and early warning systems throughout the world. The suite of innovative remote sensing tools that have recently emerged will be looked upon to fill important data and knowledge gaps (NIDIS, 2007; NRC, 2007) to address a wide range of drought-related issues including food security, water scarcity, and human health
    • …
    corecore