14,284 research outputs found

    Evaluating LAB@FUTURE, a collaborative e-learning Laboratory experiments platform

    Get PDF
    This paper presents Lab@Future, an advanced e-learning platform that uses novel Information and Communication Technologies to support and expand laboratory teaching practices. For this purpose, Lab@Future uses real and computer generated objects that are interfaced using mechatronic systems, augmented reality, mobile technologies and 3D multi user environments. The main aim is to develop and demonstrate technological support for practical experiments in the following focused disciplines namely: Fluid Dynamics - Science subject in Germany, Geometry - Mathematics subject in Austria, History and Environmental Awareness – Arts and Humanities subjects in Greece and Slovenia. In order to pedagogically enhance the design and functional aspects of this e-learning technology, we are investigating the dialogical operationalisation of learning theories so as to leverage our understanding of teaching and learning practices in the targeted context of deployment. To be able to evaluate the lab@future system in its entire complexity an evaluation methodology including several phases has been developed, performing formative as well as summative evaluations

    The Limited Effect of Graphic Elements in Video and Augmented Reality on Children’s Listening Comprehension

    Get PDF
    There is currently significant interest in the use of instructional strategies in learning environments thanks to the emergence of new multimedia systems that combine text, audio, graphics and video, such as augmented reality (AR). In this light, this study compares the effectiveness of AR and video for listening comprehension tasks. The sample consisted of thirty-two elementary school students with different reading comprehension. Firstly, the experience, instructions and objectives were introduced to all the students. Next, they were divided into two groups to perform activities—one group performed an activity involving watching an Educational Video Story of the Laika dog and her Space Journey available by mobile devices app Blue Planet Tales, while the other performed an activity involving the use of AR, whose contents of the same history were visualized by means of the app Augment Sales. Once the activities were completed participants answered a comprehension test. Results (p = 0.180) indicate there are no meaningful differences between the lesson format and test performance. But there are differences between the participants of the AR group according to their reading comprehension level. With respect to the time taken to perform the comprehension test, there is no significant difference between the two groups but there is a difference between participants with a high and low level of comprehension. To conclude SUS (System Usability Scale) questionnaire was used to establish the measure usability for the AR app on a smartphone. An average score of 77.5 out of 100 was obtained in this questionnaire, which indicates that the app has fairly good user-centered design

    A Comparison of Quantitative and Qualitative Data from a Formative Usability Evaluation of an Augmented Reality Learning Scenario

    Get PDF
    The proliferation of augmented reality (AR) technologies creates opportunities for the devel-opment of new learning scenarios. More recently, the advances in the design and implementation of desktop AR systems make it possible the deployment of such scenarios in primary and secondary schools. Usability evaluation is a precondition for the pedagogical effectiveness of these new technologies and requires a systematic approach for finding and fixing usability problems. In this paper we present an approach to a formative usability evaluation based on heuristic evaluation and user testing. The basic idea is to compare and integrate quantitative and qualitative measures in order to increase confidence in results and enhance the descriptive power of the usability evaluation report.augmented reality, multimodal interaction, e-learning, formative usability evaluation, user testing, heuristic evaluation

    Heuristic Evaluation for Serious Immersive Games and M-instruction

    Get PDF
    © Springer International Publishing Switzerland 2016. Two fast growing areas for technology-enhanced learning are serious games and mobile instruction (M-instruction or M-Learning). Serious games are ones that are meant to be more than just entertainment. They have a serious use to educate or promote other types of activity. Immersive Games frequently involve many players interacting in a shared rich and complex-perhaps web-based-mixed reality world, where their circumstances will be multi and varied. Their reality may be augmented and often self-composed, as in a user-defined avatar in a virtual world. M-instruction and M-Learning is learning on the move; much of modern computer use is via smart devices, pads, and laptops. People use these devices all over the place and thus it is a natural extension to want to use these devices where they are to learn. This presents a problem if we wish to evaluate the effectiveness of the pedagogic media they are using. We have no way of knowing their situation, circumstance, education background and motivation, or potentially of the customisation of the final software they are using. Getting to the end user itself may also be problematic; these are learning environments that people will dip into at opportune moments. If access to the end user is hard because of location and user self-personalisation, then one solution is to look at the software before it goes out. Heuristic Evaluation allows us to get User Interface (UI) and User Experience (UX) experts to reflect on the software before it is deployed. The effective use of heuristic evaluation with pedagogical software [1] is extended here, with existing Heuristics Evaluation Methods that make the technique applicable to Serious Immersive Games and mobile instruction (M-instruction). We also consider how existing Heuristic Methods may be adopted. The result represents a new way of making this methodology applicable to this new developing area of learning technology

    Mixed-methods research: a new approach to evaluating the motivation and satisfaction of university students using advanced visual technologies

    Get PDF
    The final publication is available at link.springer.comA mixed-methods study evaluating the motivation and satisfaction of Architecture degree students using interactive visualization methods is presented in this paper. New technology implementations in the teaching field have been largely extended to all types of levels and educational frameworks. However, these innovations require approval validation and evaluation by the final users, the students. In this paper, the advantages and disadvantages of applying mixed evaluation technology are discussed in a case study of the use of interactive and collaborative tools for the visualization of 3D architectonical models. The main objective was to evaluate Architecture and Building Science students’ the motivation to use and satisfaction with this type of technology and to obtain adequate feedback that allows for the optimization of this type of experiment in future iterations.Postprint (author’s final draft

    Security, Privacy and Safety Risk Assessment for Virtual Reality Learning Environment Applications

    Full text link
    Social Virtual Reality based Learning Environments (VRLEs) such as vSocial render instructional content in a three-dimensional immersive computer experience for training youth with learning impediments. There are limited prior works that explored attack vulnerability in VR technology, and hence there is a need for systematic frameworks to quantify risks corresponding to security, privacy, and safety (SPS) threats. The SPS threats can adversely impact the educational user experience and hinder delivery of VRLE content. In this paper, we propose a novel risk assessment framework that utilizes attack trees to calculate a risk score for varied VRLE threats with rate and duration of threats as inputs. We compare the impact of a well-constructed attack tree with an adhoc attack tree to study the trade-offs between overheads in managing attack trees, and the cost of risk mitigation when vulnerabilities are identified. We use a vSocial VRLE testbed in a case study to showcase the effectiveness of our framework and demonstrate how a suitable attack tree formalism can result in a more safer, privacy-preserving and secure VRLE system.Comment: Tp appear in the CCNC 2019 Conferenc

    Mobile learning: benefits of augmented reality in geometry teaching

    Get PDF
    As a consequence of the technological advances and the widespread use of mobile devices to access information and communication in the last decades, mobile learning has become a spontaneous learning model, providing a more flexible and collaborative technology-based learning. Thus, mobile technologies can create new opportunities for enhancing the pupils’ learning experiences. This paper presents the development of a game to assist teaching and learning, aiming to help students acquire knowledge in the field of geometry. The game was intended to develop the following competences in primary school learners (8-10 years): a better visualization of geometric objects on a plane and in space; understanding of the properties of geometric solids; and familiarization with the vocabulary of geometry. Findings show that by using the game, students have improved around 35% the hits of correct responses to the classification and differentiation between edge, vertex and face in 3D solids.This research was supported by the Arts and Humanities Research Council Design Star CDT (AH/L503770/1), the Portuguese Foundation for Science and Technology (FCT) projects LARSyS (UID/EEA/50009/2013) and CIAC-Research Centre for Arts and Communication.info:eu-repo/semantics/publishedVersio

    The usability attributes and evaluation measurements of mobile media AR (augmented reality)

    Get PDF
    This research aims to develop a tool for creating user-based design interfaces in mobile augmented reality (MAR) education. To develop a design interface evaluation tool, previous literature was examined for key design elements in the educational usage of MAR. The evaluation criteria identified were presence, affordance, and usability. The research used a focus group interview with 7 AR experts to develop a basic usability evaluation checklist, which was submitted to factor analysis for reliability by 122 experts in practice and academia. Based on this checklist, a MAR usability design interface test was conducted with seven fourth-grade elementary students. Then, it conducted follow-up structured interviews and questionnaires. This resulted in 29 questions being developed for the MAR interface design checklist.ope

    A review of recent methodologies, technologies and usability in English language content delivery

    Get PDF
    English Language Teaching (ELT) and content delivery have undergone vast shift in this era of modernization. With analogue content digitized as a common form of knowledge delivery, methodologies equipped with current technologies have produced new perspectives on English Language Learning. This paper reviews the status, context, teaching parameters, assessment parameters, teaching strategies and usability in the current research capacity of ELT, highlighting the current works with technologies in their content delivery methods. Emerging technologies in ELT has also inspires the other spectrum of study involving the usability of technological interfaces, which has evolved constantly with the progression of human and computer interactivity. The aim of this research is to rediscover usability evolution surrounding the technologies in ELT and to redefine the gap existed in between English learning and tools interactivity. Current technologies and usability measures used in ELT will be discussed, highlighting the current trends in gauging interface interaction. A summary of comparative results in the aforementioned works will also be highlighted in this review paper, together with the categorization of reviewed parameters, variables and metrics in ELT. The reviews conducted have shown that there are still many unexplored areas in ELT, ELT technologies and usability in ELT

    Mobile augmented reality in learning chemistry subject: an evaluation of science exploration

    Get PDF
    Various technologies have been used in making teaching and learning sessions more effective, fun, and enjoyable. One of the ways to make teaching and learning interactive is by emphasizing the use of mobile augmented reality (MAR). Thus, this study has proposed using MAR for a chemistry subject, namely science exploration (SCIENEX). This study adopted design and development research (DDR) by employing the analysis, design, development, implementation, and evaluation (ADDIE) model. The phases involved in DDR are ADDIE. SCIENEX was evaluated based on its validity, usability, and effectiveness. Five experts validated SCIENEX after it had been completely developed. The samples for usability testing and effectiveness of SCIENEX were 30 secondary school students who were studying chemistry. The results of the evaluation of the experts’ validation revealed that SCIENEX is a valid and appropriate MAR application for the learning of topics in chemistry. The result also revealed that the majority of students strongly agreed that SCIENEX is appropriate for the usage of MAR in learning chemistry, as it is fun, easy to use, and helps students to understand their learning. Interestingly, SCIENEX could increase students’ performance in their learning (t=21.754; p=0.000). Thus, it can be concluded that SCIENEX is valid, can be used for learning chemistry, and can help students in their learning. The limitations of this study and future suggestions for research are also discussed
    corecore