13,407 research outputs found

    A Benchmark for Banks’ Strategy in Online Presence – An Innovative Approach Based on Elements of Search Engine Optimization (SEO) and Machine Learning Techniques

    Get PDF
    This paper aims to offer a new decision tool to assist banks in evaluating their efficiency of Internet presence and in planning the IT investments towards gaining better Internet popularity. The methodology used in this paper goes beyond the simple website interface analysis and uses web crawling as a source for collecting website performance data and employed web technologies and servers. The paper complements this technical perspective with a proposed scorecard used to assess the efforts of banks in Internet presence that reflects the banks’ commitment to Internet as a distribution channel. An innovative approach based on Machine Learning Techniques, the K-Nearest Neighbor Algorithm, is proposed by the author to estimate the Internet Popularity that a bank is likely to achieve based on its size and efforts in Internet presence.SEO, Internet Website Popularity, banking industry, Machine Learning, K-Nearest Neighbors.

    Learning to Transform Time Series with a Few Examples

    Get PDF
    We describe a semi-supervised regression algorithm that learns to transform one time series into another time series given examples of the transformation. This algorithm is applied to tracking, where a time series of observations from sensors is transformed to a time series describing the pose of a target. Instead of defining and implementing such transformations for each tracking task separately, our algorithm learns a memoryless transformation of time series from a few example input-output mappings. The algorithm searches for a smooth function that fits the training examples and, when applied to the input time series, produces a time series that evolves according to assumed dynamics. The learning procedure is fast and lends itself to a closed-form solution. It is closely related to nonlinear system identification and manifold learning techniques. We demonstrate our algorithm on the tasks of tracking RFID tags from signal strength measurements, recovering the pose of rigid objects, deformable bodies, and articulated bodies from video sequences. For these tasks, this algorithm requires significantly fewer examples compared to fully-supervised regression algorithms or semi-supervised learning algorithms that do not take the dynamics of the output time series into account

    SkyDOT (Sky Database for Objects in the Time Domain): A Virtual Observatory for Variability Studies at LANL

    Full text link
    The mining of Virtual Observatories (VOs) is becoming a powerful new method for discovery in astronomy. Here we report on the development of SkyDOT (Sky Database for Objects in the Time domain), a new Virtual Observatory, which is dedicated to the study of sky variability. The site will confederate a number of massive variability surveys and enable exploration of the time domain in astronomy. We discuss the architecture of the database and the functionality of the user interface. An important aspect of SkyDOT is that it is continuously updated in near real time so that users can access new observations in a timely manner. The site will also utilize high level machine learning tools that will allow sophisticated mining of the archive. Another key feature is the real time data stream provided by RAPTOR (RAPid Telescopes for Optical Response), a new sky monitoring experiment under construction at Los Alamos National Laboratory (LANL).Comment: to appear in SPIE proceedings vol. 4846, 11 pages, 5 figure

    Fast Detection of Community Structures using Graph Traversal in Social Networks

    Full text link
    Finding community structures in social networks is considered to be a challenging task as many of the proposed algorithms are computationally expensive and does not scale well for large graphs. Most of the community detection algorithms proposed till date are unsuitable for applications that would require detection of communities in real-time, especially for massive networks. The Louvain method, which uses modularity maximization to detect clusters, is usually considered to be one of the fastest community detection algorithms even without any provable bound on its running time. We propose a novel graph traversal-based community detection framework, which not only runs faster than the Louvain method but also generates clusters of better quality for most of the benchmark datasets. We show that our algorithms run in O(|V | + |E|) time to create an initial cover before using modularity maximization to get the final cover. Keywords - community detection; Influenced Neighbor Score; brokers; community nodes; communitiesComment: 29 pages, 9 tables, and 13 figures. Accepted in "Knowledge and Information Systems", 201

    A personalized and context-aware news offer for mobile devices

    Get PDF
    For classical domains, such as movies, recommender systems have proven their usefulness. But recommending news is more challenging due to the short life span of news content and the demand for up-to-date recommendations. This paper presents a news recommendation service with a content-based algorithm that uses features of a search engine for content processing and indexing, and a collaborative filtering algorithm for serendipity. The extension towards a context-aware algorithm is made to assess the information value of context in a mobile environment through a user study. Analyzing interaction behavior and feedback of users on three recommendation approaches shows that interaction with the content is crucial input for user modeling. Context-aware recommendations using time and device type as context data outperform traditional recommendations with an accuracy gain dependent on the contextual situation. These findings demonstrate that the user experience of news services can be improved by a personalized context-aware news offer
    • …
    corecore