2,057 research outputs found

    UAS in the Airspace: A Review on Integration, Simulation, Optimization, and Open Challenges

    Full text link
    Air transportation is essential for society, and it is increasing gradually due to its importance. To improve the airspace operation, new technologies are under development, such as Unmanned Aircraft Systems (UAS). In fact, in the past few years, there has been a growth in UAS numbers in segregated airspace. However, there is an interest in integrating these aircraft into the National Airspace System (NAS). The UAS is vital to different industries due to its advantages brought to the airspace (e.g., efficiency). Conversely, the relationship between UAS and Air Traffic Control (ATC) needs to be well-defined due to the impacts on ATC capacity these aircraft may present. Throughout the years, this impact may be lower than it is nowadays because the current lack of familiarity in this relationship contributes to higher workload levels. Thereupon, the primary goal of this research is to present a comprehensive review of the advancements in the integration of UAS in the National Airspace System (NAS) from different perspectives. We consider the challenges regarding simulation, final approach, and optimization of problems related to the interoperability of such systems in the airspace. Finally, we identify several open challenges in the field based on the existing state-of-the-art proposals

    Quantifying the Simulation-Reality Gap for Deep Learning-Based Drone Detection

    Get PDF
    The detection of drones or unmanned aerial vehicles is a crucial component in protecting safety-critical infrastructures and maintaining privacy for individuals and organizations. The widespread use of optical sensors for perimeter surveillance has made optical sensors a popular choice for data collection in the context of drone detection. However, efficiently processing the obtained sensor data poses a significant challenge. Even though deep learning-based object detection models have shown promising results, their effectiveness depends on large amounts of annotated training data, which is time consuming and resource intensive to acquire. Therefore, this work investigates the applicability of synthetically generated data obtained through physically realistic simulations based on three-dimensional environments for deep learning-based drone detection. Specifically, we introduce a novel three-dimensional simulation approach built on Unreal Engine and Microsoft AirSim for generating synthetic drone data. Furthermore, we quantify the respective simulation-reality gap and evaluate established techniques for mitigating this gap by systematically exploring different compositions of real and synthetic data. Additionally, we analyze the adaptation of the simulation setup as part of a feedback loop-based training strategy and highlight the benefits of a simulation-based training setup for image-based drone detection, compared to a training strategy relying exclusively on real-world data

    Multicriteria decision making for selecting an optimal survey approach for large building portfolios

    Get PDF
    Technological advances and innovations have led to various pre- and post-disaster data collection alternatives to traditional sidewalk surveys. Hence, selecting a suitable survey approach may be challenging for different decision-makers. This paper proposes a multicriteria decision-making (MCDM) method to choose the optimal survey approach to gather exposure information needed for reliable multi-hazard risk assessment of large building and infrastructure portfolios. Both deterministic and stochastic implementations of MCDM are investigated, considering primary sources of aleatory and epistemic uncertainties. The applicability of the proposed framework is demonstrated for a portfolio of 13,200 buildings in a hypothetical multi-hazard prone region. The results show that informed decisions on identifying an optimal survey technique could be efficiently derived using MCDM and a number of relevant criteria. The proposed methodology can support various decision-makers in pre- and post-disaster risk modeling and management/reduction

    Autonomous Collision avoidance for Unmanned aerial systems

    Get PDF
    Unmanned Aerial System (UAS) applications are growing day by day and this will lead Unmanned Aerial Vehicle (UAV) in the close future to share the same airspace of manned aircraft.This implies the need for UAS to define precise safety standards compatible with operations standards for manned aviation. Among these standards the need for a Sense And Avoid (S&A) system to support and, when necessary, sub¬stitute the pilot in the detection and avoidance of hazardous situations (e.g. midair collision, controlled flight into terrain, flight path obstacles, and clouds). This thesis presents the work come out in the development of a S&A system taking into account collision risks scenarios with multiple moving and fixed threats. The conflict prediction is based on a straight projection of the threats state in the future. The approximations introduced by this approach have the advantage of high update frequency (1 Hz) of the estimated conflict geometry. This solution allows the algorithm to capture the trajectory changes of the threat or ownship. The resolution manoeuvre evaluation is based on a optimisation approach considering step command applied to the heading and altitude autopilots. The optimisation problem takes into account the UAV performances and aims to keep a predefined minimum separation distance between UAV and threats during the resolution manouvre. The Human-Machine Interface (HMI) of this algorithm is then embedded in a partial Ground Control Station (GCS) mock-up with some original concepts for the indication of the flight condition parameters and the indication of the resolution manoeuvre constraints. Simulations of the S&A algorithm in different critical scenarios are moreover in-cluded to show the algorithm capabilities. Finally, methodology and results of the tests and interviews with pilots regarding the proposed GCS partial layout are covered

    Flight control of hybrid drones towards enabling parcel relay manoeuvres

    Get PDF
    This work addresses the modeling and controlling process of a hybrid UAV, aimed for parcel relay maneuvers. Hybrid UAVs bring big advantages with the capability of flying in two flight modes, rotary and fixed wing. But with them comes added complexity both in modeling and controlling. This work is based on a popular airframe, a tilt tri-rotor UAV, containing all the specific system dynamics such vehicle category provides. The model is then validated by designing two separate controllers for both flight modes, capable of trajectory tracking in eachmode,makinguseofacustomhybridcontrolallocationtechniquethatdifferentiates the control in three parts: vertical, horizontal, and transitional flight modes. Finally, a hybrid controller is proposed, using a finite state machine capable of handling logical events, with the aim to provide control logic to perform autonomous mid flight transitions. All the designs system are simulated using a mathematical framework and a power-full simulation tool.Este trabalho aborda o processo de modelação e controlo de um veículo aéreo não tripulado híbrido com o objetivo de proporcionar manobras de transição de carga. Drones híbridos trazem grandes vantagem com a sua capacidade de voar em dois modos de voo, de asa rotativa e asa fixa. Por outro lado, estas vantagens adicionam complexidade ao sistema dificultando o processo de modulação e controlo. Nestetrabalhoestápresenteummodelodeumdronetrirotortendodoisrotoresmovíveis. Este contém todas as dinâmicas especificas que um sistema deesta categoria de UAV obriga. O modelo é posteriormente validado com dois controladores separados em modo de voo, capazes de proporcionar medidas de seguimento de trajetória em cada modo, usando uma técnica de alocação de controlo personalizada que diferencia o controlo em três partes: vertical, horizontal e de transição. Por fim, é proposto um controlador híbrido contento uma máquina de estados capaz de tratar de eventos lógicos, de modo a proporcionar transições de modo de voo autónomas em pleno voo. Todos os sistemas propostos são devidamente simulados usando ferramentas matemáticas e também poderosos sistemas de simulação

    Context-Enabled Visualization Strategies for Automation Enabled Human-in-the-loop Inspection Systems to Enhance the Situation Awareness of Windstorm Risk Engineers

    Get PDF
    Insurance loss prevention survey, specifically windstorm risk inspection survey is the process of investigating potential damages associated with a building or structure in the event of an extreme weather condition such as a hurricane or tornado. Traditionally, the risk inspection process is highly subjective and depends on the skills of the engineer performing it. This dissertation investigates the sensemaking process of risk engineers while performing risk inspection with special focus on various factors influencing it. This research then investigates how context-based visualizations strategies enhance the situation awareness and performance of windstorm risk engineers. An initial study investigated the sensemaking process and situation awareness requirements of the windstorm risk engineers. The data frame theory of sensemaking was used as the framework to carry out this study. Ten windstorm risk engineers were interviewed, and the data collected were analyzed following an inductive thematic approach. The themes emerged from the data explained the sensemaking process of risk engineers, the process of making sense of contradicting information, importance of their experience level, internal and external biases influencing the inspection process, difficulty developing mental models, and potential technology interventions. More recently human in the loop systems such as drones have been used to improve the efficiency of windstorm risk inspection. This study provides recommendations to guide the design of such systems to support the sensemaking process and situation awareness of windstorm visual risk inspection. The second study investigated the effect of context-based visualization strategies to enhance the situation awareness of the windstorm risk engineers. More specifically, the study investigated how different types of information contribute towards the three levels of situation awareness. Following a between subjects study design 65 civil/construction engineering students completed this study. A checklist based and predictive display based decision aids were tested and found to be effective in supporting the situation awareness requirements as well as performance of windstorm risk engineers. However, the predictive display only helped with certain tasks like understanding the interaction among different components on the rooftop. For remaining tasks, checklist alone was sufficient. Moreover, the decision aids did not place any additional cognitive demand on the participants. This study helped us understand the advantages and disadvantages of the decision aids tested. The final study evaluated the transfer of training effect of the checklist and predictive display based decision aids. After one week of the previous study, participants completed a follow-up study without any decision aids. The performance and situation awareness of participants in the checklist and predictive display group did not change significantly from first trial to second trial. However, the performance and situation awareness of participants in the control condition improved significantly in the second trial. They attributed this to their exposure to SAGAT questionnaire in the first study. They knew what issues to look for and what tasks need to be completed in the simulation. The confounding effect of SAGAT questionnaires needs to be studied in future research efforts

    A Systemic Approach to Next Generation Infrastructure Data Elicitation and Planning Using Serious Gaming Methods

    Get PDF
    Infrastructure systems are vital to the functioning of our society and economy. However, these systems are increasingly complex and are more interdependent than ever, making them difficult to manage. In order to respond to increasing demand, environmental concerns, and natural and man-made threats, infrastructure systems have to adapt and transform. Traditional engineering design approaches and planning tools have proven to be inadequate when planning and managing these complex socio-technical system transitions. The design and implementation of next generation infrastructure systems require holistic methodologies, encompassing organizational and societal aspects in addition to technical factors. In order to do so, a serious gaming based risk assessment methodology is developed to assist infrastructure data elicitation and planning. The methodology combines the use of various models, commercial-off-the-shelf solutions and a gaming approach to aggregate the inputs of various subject matter experts (SMEs) to predict future system characteristics. The serious gaming based approach enables experts to obtain a thorough understanding of the complexity and interdependency of the system while offering a platform to experiment with various strategies and scenarios. In order to demonstrate its abilities, the methodology was applied to National Airspace System (NAS) overhaul and its transformation to Next Generation Air Transportation System (NextGen). The implemented methodology yielded a comprehensive safety assessment and data generation mechanism, embracing the social and technical aspects of the NAS transformation for the next 15 years

    Cognitive Resilience to Psychological Stress in Military Personnel

    Get PDF
    Military personnel often perform complex cognitive operations under unique conditions of intense stress. This requirement to perform diverse physical and mental tasks under stress, often with high stakes, has led to recognition of the term ‘tactical athlete’ for these performers. Impaired cognitive performance as a result of this stress may have serious implications for the success of military operations and the well-being of military service men and women, particularly in combat scenarios. Therefore, understanding the nature of the stress experienced by military personnel and the resilience of cognitive functioning to this stress is of great importance. This review synthesises the current state of the literature regarding cognitive resilience to psychological stress in tactical athletes. The experience of psychological stress in military personnel is considered through the lens of the Transactional Theory of stress, while offering contemporary updates and new insights. Models of the effects of stress on cognitive performance are then reviewed to highlight the complexity of this interaction before considering recent advancements in the preparation of military personnel for the enhancement of cognitive resilience. Several areas for future research are identified throughout the review, emphasising the need for the wider use of self-report measures and mixed methods approaches to better reflect the subjective experience of stress and its impact on the performance of cognitive operations

    Toward digitalization in the construction industry with immersive and drones technologies: a critical literature review

    Get PDF
    Purpose In this study, a critical literature review was utilized in order to provide a clear review of the relevant existing studies. The literature was analyzed using the meta-synthesis technique to evaluate and integrate the findings in a single context. Design/methodology/approach Digital transformation in construction requires employing a wide range of various technologies. There is significant progress of research in adopting technologies such as unmanned aerial vehicles (UAVs), also known as drones, and immersive technologies in the construction industry over the last two decades. The purpose of this research is to assess the current status of employing UAVs and immersive technologies toward digitalizing the construction industry and highlighting the potential applications of these technologies, either individually or in combination and integration with each other. Findings The key findings are: (1) UAVs in conjunction with 4D building information modeling (BIM) can be used to assess the project progress and compliance checking of geometric design models, (2) immersive technologies can be used to enable controlling construction projects remotely, applying/checking end users’ requirements, construction education and team collaboration. Practical implications A detailed discussion around the application of UAVs and immersive technologies is provided. This is expected to support gaining an in-depth understanding of the practical applications of these technologies in the industry. Originality/value The review contributes a needed common basis for capturing progress made in UAVs and immersive technologies to date and assessing their impact on construction projects. Moreover, this paper opens a new horizon for novice researchers who will conduct research toward digitalized construction
    corecore